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Abstract. The spatio-temporal dynamics of a population present one ofthe most fascinating as-
pects and challenges for ecological modelling. In this article we review some simple mathematical
models, based on one dimensional reaction-diffusion-advection equations, for the growth of a pop-
ulation on a heterogeneous habitat. Considering a number ofmodels of increasing complexity we
investigate the often contrary roles of advection and diffusion for the persistence of the population.
When it is possible we demonstrate basic mathematical techniques and give the critical conditions
providing the survival of a population in simple systems andin more complex resource-consumer
models which describe the dynamics of phytoplankton in a water column.
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1. Introduction

For long times field biologists and naturalists have been fascinated by the richness and beauty
of complex patterns that can be observed in spatially extended populations. However, the same
observations also constitute a challenge for theoreticians who aim to explain this complexity by
means of mathematical models. At first glance one might be tempted to argue that the spatial
diversity of natural populations mainly originates from some underlying abiotic heterogeneity of
the environment. If growth conditions vary between different locations then this spatial variation
should be reflected in the density distribution of natural populations. Thus, it is reasonable to
assume that a large part of the observed richness in the patterning of biotic landscape can be
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attributed to the spatial heterogeneity of growth conditions. On the other hand in nearly all systems
populations at different locations are coupled and are ableto interact with each other, be it by
random, diffusive mixing or by directed, advective flows or currents, which are able to transport
individual organisms from one region to another. Note that the term “advection” here is used in a
very general sense, including different mechanisms of transport, such as drift caused by a current
of water, sinking and floating-up in the gravity field, chemotaxis, etc.

The impact of such spatial interactions on the fate of a localpopulation can be very diverse,
depending on whether the flow brings-in new immigrants into the habitat or if it takes them away.
Furthermore, diffusion and advection can have opposing influences, where, for example, one pro-
cess may be beneficial for the population, while another process has adverse effects. Usually, the
role of an advective flux is evident and mainly depends on its strength and direction. In contrast,
the role of diffusivity can be of two kinds. On the one hand, diffusivity accelerates the spread of
a population in a habitat and is necessary to provide the population’s persistence in a flux. On the
other hand, intensive mixing may transport too many organisms into unfavourable zones, result-
ing in the extinction of the population. Moreover, in consumer-resource models usually also the
resource fluxes are driven by diffusivity and advection, a fact which leads to even new patterns
and dynamical behaviour. As a consequence, it is quite possible to find stable populations in loca-
tions where growth conditions alone would not permit persistence. On the other hand, seemingly
well-being habitats may not be able to sustain a stable population, if they suffer population out-
flows. From all these effects, populations are spatially structured in an intricate interplay between
local growth and its geographical variations on the one handand spatial transport by diffusion and
advection on the other hand.

This article is devoted to present an introductory review ofthese topics and to introduce the
reader some of the most commonly used models for the population dynamics in a non-uniform
turbulent environment. Even though we have in particular the specific case of phytoplankton dy-
namics in mind, the main concepts considered here hold for any population subjected to mixing
and advection. When it is possible, to reproduce the whole picture we perform derivations of the
main mathematical relations. Otherwise we aim at least to demonstrate some basic ideas and refer
to detailed discussions, providing information about the main techniques that are useful in this
field of research. There exist many excellent reviews about spatial population dynamics (see e.g.
[32, 47, 65, 72]). Nevertheless to our knowledge, the interplay of advection and diffusion for a
heterogeneous population, as elaborated in this text, has never been described. So, while the text
will not provide much new insights for the specialist, we hope that many readers will find this text
a valuable introduction into the basic mechanism and critical conditions providing the survival of
a population in a heterogeneous environment.

To focus on the main ideas, we had to confine the review to topics related with population
survival. However, we would like to briefly mention other important aspects of spatial population
dynamics that had to be omitted here. First, we had to restrict to single species populations, while
one of the most important and still debatable challenges concerns the competition of spatially
structured populations [104, 25, 98] and the high diversityof phytoplankton species (see e.g. [88]
and the references therein). Second, for the sake of simplicity we included only Fickian diffusion
models, whereas in the ocean diffusivity depends on the scale of phenomena [72]. Third, we had
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to omit the interesting aspects concerning conditional persistence in situations where the growth
is influenced by an Allee effect [100]. Fourth, the interaction of turbulent currents with other pro-
cesses can produce complex spatial structures in phytoplankton distributions [57], whereas locally
oscillatory behaviour may lead to spatio-temporal chaoticwaves [79, 80]. Finally, we did not even
touch such important problems as model validation and the simulation of multicomponent natural
ecosystems [60].

The review is structured as follows. In chapter two, we shortly discuss some non-spatial mod-
els, which will be used later to build-up spatial explicit models. In chapter three we consider
critical patch models, starting from the well known KiSS model, and proceed with more sophis-
ticate models, which draw out the influence of boundary conditions, finiteness of the favourable
patch, heterogeneity of the mixing, etc. Furthermore, we consider the Fisher-Kolmogorov equation
and its extensions to advection, non-uniform mixing and heterogeneous environments. In the last
chapter, we consider 1D models of the vertical phytoplankton distribution, starting from those that
include only light limitation and then considering models including many limiting factors. How-
ever, even in the latter models we focus on the basic theoretical aspects and general conclusions.

2. Non-spatial models

Logistic growth As a warming-up, in this chapter we shortly describe some simple population
models in a non-spatial context. These models will mainly beused as a base for developing spa-
tially extended models, but they may also serve as a benchmark for exploring the properties of their
spatial analogues. LetP (t) denote the density of a population of interest at timet. In the simplest
way, the dynamics ofP can be modelled in terms of an ordinary differential equation of first order

dP

dt
= µ(P )P , (2.1)

where the growth rateµ(P ) depends on the population densityP . The functionµ(P ) takes into
account for density dependent regulatory factors which usually are associated with resource deple-
tion or conditions of over-crowding. Consequently, (neglecting the possibility of an Allee effect)
we may assume thatµ(P ) is monotonically decreasing and eventually becomes negative for large
densities. The simplest form to put this into a model is the logistic growth

dP

dt
= µ0P

(

1 − P

K

)

, (2.2)

whereK is the carrying capacity of the system and describes the maximal population density that
can be sustained by the system, i.e.µ(K) = 0. Equation (2.2) can be thought to arise from a
Taylor expansion of equation (2.1) for small densitiesP ≪ K, whereµ0 ≡ µ(0) is the growth rate
at small density andK ≡ −µ0 (∂µ/∂P )−1 is the carrying capacity.

Resource-limited growth As a secondary model class, we investigate resource limitedpopula-
tion growth, where the dynamics of the resource is explicitly included into the model equations.
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Figure 1: Typical phase trajectories of the non-spatial models. (A) the dynamics of the conservative
model (2.3) is reduced to a straight line; (B) the non-conservative model (2.7) leads to the extinction
of the population; (C) the trajectory of system (2.10) spirals in phase space to an isolated fixed
point. The initial values P(0) = 0.1, N(0) = 1.5 are marked by filled circles, other parameters are
c = 5, HN = 5, m = 1, δ = 0.005, ε = 0.5, andNi = 15.

Possibly the most simple way to model an isolated consumer-resource system (i.e., in the absence
of any fluxes out of the system) is given in the following form

dP

dt
= µ(N)P − mP ,

(2.3)
dN

dt
= −µ(N)P + mP .

HereN(t) denotes the resource concentration (e.g., a limiting nutrient such as nitrate or phosphate)
at timet and the population abundanceP (t) is measured in units of the organism’s resource con-
tent. As usual, in contrast to equation (2.1), here we explicitly separated the growth into a term
proportional to the resource uptake,µ(N)P , and a death process with mortalitym. Note that in this
review the symbolµ has a somewhat different interpretation in the context of a resource-implicit
(2.1) or resource-explicit model (2.3). We hope that the reader is not confused by this notation.

Usually,µ(N) is assumed to vanish for small resource concentrations (µ(0) = 0) and to be
saturated for largeN . A convenient parametrisation is given by the Monod form

µ(N) = c
N

HN + N
(2.4)

with the half-saturation constantHN .
Equation (2.3) represents a closed system, where recyclingis assumed to be 100% efficient.

Thus the biomass that is taken out of the system due to death processes is remineralised into the
nutrient pool, i.e. no material is lost in the conversion from consumer to nutrients. As a conse-
quence, this system can be reduced to a one-dimensional model, despite the fact that it contains
two equations. The reason is that the total resource concentration, either free or bound to the pop-
ulation, is a first integral of motion:S = N +P = const. After plugging this into the equation for
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P we obtain a single equation of the form (2.1) for the time dynamics of the population density,

dP

dt
= P [µ(S − P ) − m] . (2.5)

If the saturation of the uptake rate is neglected,µ(N) = cN , we retrieve the logistic growth model
(2.2) with

µ0 = cS − m and K = S − m

c
. (2.6)

The phase trajectory of system (2.3) in(P, N) coordinate is a straight line from the initial condi-
tions to an equilibrium state (Fig. 1A).

We note though, that the reduction to a single equation worksonly for a closed system. In
general, recycling efficiency will never be fully effective. Thus, one may assume that only a
fractionε of the dead biomass is remineralised, leading to a non-conservative model

dP

dt
= µ(N)P − mP ,

(2.7)
dN

dt
= −µ(N)P + εmP .

The two approaches introduced in this section will be used inchapter 4 as building blocks to
model the local reaction of a spatial extended population. However we should note that both
(2.3) and (2.7) have some shortcomings, which ultimately are related to the fact that the models
do not contain in- and out-flows. For example, the model (2.7)does not even admit isolated
stationary states in the(N, P )-phase plane and for any initial condition leads to the extinction of
the population,P (t) → 0 (Fig. 1B). While this is no problem in the spatial extended counterparts
of the models, which necessarily have exchanges with surroundings specified by the boundary
conditions, in local models these exchanges should be introduced as additional terms.

Chemostat models To show that these problem disappear as soon as external fluxes are incorpo-
rated into the models, we shortly introduce the most simple and frequently used chemostat model.
Consider a well-stirred reactor that contains phytoplankton cells with concentrationP (t) and a
limiting nutrient with concentrationN(t). The chemostat is supplied with the nutrient at an input
concentrationNi from an external nutritive medium. The outflow contains bothmedium and phy-
toplankton cells. Inflow and outflow are characterised by thedilution rateδ. Then the chemostat
equations take the following form

dP

dt
= µ(N)P − (m + δ)P ,

(2.8)
dN

dt
= δ(Ni − N) − µ(N)P + εmP .

In this model, the total amount of free and bound nutrientsS = N + P is not conserved. Thus, the
chemostat sustains a stable feasible equilibrium and the system spirals in phase space to an isolated
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fixed point (Fig. 1C), see e.g., [38, 10, 39]. Furthermore, for perfect nutrient recycling (ε = 1) one
can easily show thatS(t) follows the simple dynamics

dS

dt
= δ(Ni − S) . (2.9)

Therefore, after some transient time, determined by the exchange rateδ, the system settles to a state
whereS = Ni. This means that the total amount of nutrients in the system,either bound to the pop-
ulation or free, asymptotically goes to the external nutrient concentration, and one asymptotically
retains a one-dimensional equation, similar to (2.5)

dP

dt
= P [µ(Ni − P ) − (m + δ)] . (2.10)

3. Critical patch models for an extended population

In this section we review some simple one-dimensional spatio-temporal models which demonstrate
the intricate interplay between mixing, advection, boundary conditions and other factors which are
critical for the persistence of a population. Consider a population growing on a one-dimensional
(1D) axis, which may represent either a horizontal or vertical spatial extension. LetP (x, t) denote
the population density at timet and positionx. We assume that the change of density occurs as a
result of the local death-birth processes and of the spatialmovement of organisms due to diffusion
and advection. The dynamics of such a population can be written in terms of a reaction-diffusion-
advection equation [72, 62]

∂P (x, t)

∂t
= reproduction− advection+ mixing

= µ(x, P )P − v
∂P

∂x
+

∂

∂x
D

∂P

∂x
, (3.1)

whereµ represents the growth rate (compare to equation (2.1)),v is the advection velocity andD
is the diffusivity, which can depend onx and other variables. The advective termv ∂P

∂x
describes

the drift of the population with the constant velocityv. There are many physical or biological
factors which can give rise to advective processes. For instance, in a vertical system the organisms
(e.g. phytoplankton cells) may sink (or rise) because they are more heavy (or light) than their
surrounding medium. Another example arises for a population in a vertical/horizontal stream (e.g.,
in a horizontal flow of a river or in an ocean current). Advection and diffusion can be written in
terms of a derivative∂

∂x
J(P, x) so that the whole flux of biomass is given as

J = vP − D
∂P

∂x
. (3.2)

Additionally, model (3.1) has to be complemented by appropriate boundary conditions which
specify the environmental influence on the spatially extended system. One can distinguish between
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three important types of boundary conditions. The first type(or Dirichlet) boundary condition
merely specifies the value of the solution at the boundary. For example, the condition

P (0) = 0, P (L) = 0 (3.3)

assumes that the population density vanishes at the habitatedges, which corresponds to an abso-
lutely hostile environment outside the segment[0, L]. The second type (or Neumann) boundary
condition specifies the flux across the boundary. For instance, the condition

J(x)|x=0,L =

(

vP − D
∂P

∂x

)
∣

∣

∣

∣

x=0,L

= 0 (3.4)

specifies impenetrable boundaries, in other words there is no in- and outflow of biomass across
the habitat edges. The boundary condition of the third (Robin) type is a linear combination of
the Dirichlet and Neumann conditions. Consider, for instance, a penetrable barrier, where the flux
of organisms across the barrier is proportional to the difference of the population density outside,
Pout, and inside,P (x), yielding

J(x)|x=0,L =

(

vP − D
∂P

∂x

)
∣

∣

∣

∣

x=0,L

= h(P (x) − Pout)|x=0,L . (3.5)

If the permeability of the barrierh = 0 this condition is equivalent to the zero flux boundary
condition, and ash → ∞ it approaches the Dirichlet boundary conditionsP (L) = Pout.

3.1. Persistence on a finite patch: critical patch size and mixing

For simplicity, we begin our investigation with models which implement only diffusion but no
advection. We concentrate on the population dynamics on a finite favourable patch and show that
in this case diffusion plays a negative role for the populations’ persistence.

In the absence of advection,v = 0, equation (3.1) reduces to

∂P (x, t)

∂t
= µ(x, P )P + D

∂2P

∂x2
(3.6)

complemented by appropriate boundary conditions. Perhapsthe most important biological ques-
tion that one may ask in this model concerns the conditions under which the population will be
able to persist or die out. This question can be trivially answered for an infinite homogeneous
environment, where the growth rate is independent of the spatial coordinate,µ(x, P ) = µ(P ). In
this case (and assuming that there is no multistability, i.e. the equationµ(P ) = 0 has a unique
positive solutionP ∗) the fate of the population entirely depends on the sign of the linearisation of
the growth rate aroundP = 0. The population can invade if and only if the linearised growth rate
µ0 = µ(P = 0) > 0. Furthermore, it is easy to verify that the final distribution must be uniform,
P (x) = P ∗.

In reality the growth conditions will differ between various locations so thatµ(x, P ) will de-
pend onx. We refer to such a situation as a “heterogeneous environment”. In a heterogeneous sys-
tem, obviously also the linearised growth rate will be a function of the spatial position,µ0 = µ0(x),
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which makes the problem of the population persistence more complicated. Even if locally the pop-
ulation faces bad environmental conditions,µ0(x) < 0, due to the population inflow from other
locations it may still be able to persist. On the other hand, afavourable patch withµ0(x) > 0 is no
longer save, because diffusion out off the patch can cause additional losses which may even lead
to local extinction.

KiSS model One simple and elegant model to study this problem has been independently in-
troduced by Kierstead and Slobodkin [44] and Skellam [96]. The main idea is to separate the
landscape into a favourable area (which will be denoted as the species’ habitat) adjoining some
hostile environment from both sides. For its simplicity, Akiro Okubo assigned to the model the
name KiSS, which on the one hand includes the authors’ initials, and from the other hand can be
deciphered as “Keep it Simple Stupid” [97]. The KiSS model suggests a population growing on
a finite patch of sizeL, surrounded by an absolutely hostile environment with infinite mortality
(Fig. 2). Thus, per definition the population density outside of the favourable patch equals zero,
and it is sufficient to consider the dynamics inside the segment 0 ≤ x ≤ L, upon the condition that
the solution vanishes at the boundaries. To simplify the situation even further, the growth term in
equation (3.6) is linearised for small density and is set constantµ0 within the habitat, which yields
the following equations

∂P

∂t
= µ0P + D

∂2P

∂x2
, 0 ≤ x ≤ L (3.7)

P (0) = P (L) = 0 . (3.8)

This model could represent, for instance, the vegetation patterns of coastal plants growing on some
island in the ocean, where diffusion of plants takes place via seed dispersal. Seeds which are
transported out of the island into the water cannot survive,which is equivalent to infinite mortality
outside of the favourable patch.

A detailed analysis of the KiSS model can be found in [96, 44, 72]. Here we just present one
simple solution. Using the method of separation of variables we assume the existence of a solution
of the form

P (x, t) = X(x) T (t) . (3.9)

Substituting this expression into (3.7) we obtain the eigenvalue problem

T ′

n(t) = λnTn(t)

DX ′′

n(x) + (µ0 − λn)Xn(x) = 0 (3.10)

where the eigenfunctionsXn(x) should satisfy the boundary conditions (3.8), i.e.Xn(0) =
Xn(L) = 0. The solution to the last equation of system (3.10) is well known

Xn(x) = An sin

√

µ0 − λn

D
x + Bn cos

√

µ0 − λn

D
x .
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Figure 2: Influence of diffusion on the persistence of an isolated population in the KiSS model
(3.7). (A)D = 3.2 < D0, the population growth is unbounded; (B)D = 3.3 > D0, the population
goes extinct. Parameters areµ0 = 2, L = 4, K = 400, thusD0 = 3.24. The horizontal thick black
line shows the location of the favourable patch.

It satisfies the boundary conditions only ifBn = 0 and the argument of the sine is divisible byπn
whenx = L. From the last condition we obtain the eigenvalues

λn = µ0 −
π2n2D

L2
, n = 1, 2, . . . (3.11)

Solving the first equation of system (3.10), we find thatTn(t) = Ceλnt. The problem is linear,
therefore using the superposition principle, we can writeP (x, t) as the sum

P (x, t) =
∞
∑

n=1

An sin
(nπx

L

)

eλnt ,

where the coefficientsAn depend on the initial conditions.
Thus, with the separation ansatz (3.9), we were able to present the dynamics of the full model

as a sum of simple “modes”. The dynamics of moden is determined by its eigenvalueλn. A
mode grows ifλn > 0, decays ifλn < 0, and can also oscillate if the imaginary part ofλn is not
vanishing. Moreover, ast → ∞ the full solution approaches to the mode that corresponds tothe
largest (principal) eigenvalueλ∗, because this mode has the fastest time exponentT (t) ∼ eλ∗t.
From (3.11) we find that the largest eigenvalueλ∗ = λ1. Therefore,

P (x, t)−−−−→t→∞
A1 sin

(πx

L

)

eλ1t .

The population grows, and so is able to persist, ifλ1 is positive. By contrast, forλ1 < 0 the
population dies out exponentially on the whole habitat. Thus using expression (3.11) forn = 1, we
obtain the fundamental relation between the diffusivity, the growth rate and the critical (minimal)
size of the favourable patch, which provides the survival ofthe population

L ≥ L0 = π

√

D

µ0
. (3.12)
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Okubo [71, 72] demonstrated that this equation can be obtained by means of simple dimen-
sional analysis. Suppose thatL0 = f(D, µ0). Dimensionally,[D] = m2/s, [µ0] = 1/s, and
[L] = m. Thereby, the simplest combination of parameters yields

L0 = c

√

D

µ0
,

wherec is a non-dimensional constant which equalsπ in the 1D model. The same expression holds
in 2D systems [96, 44], and it can be shown [32, 9] that the constant c depends on the principal
eigenvalue, thereby it represents the geometry of the model.

Equation (3.12) can also be written in the form

D ≤ D0 =
L2µ0

π2
, (3.13)

yielding the critical, maximum mixingD0 under which the population can survive. Fig. 2A and
Fig. 2B demonstrate the population dynamics for different diffusivities. The population density
grows exponentially, if the diffusivity is smaller thanD0 (Fig. 2A) and decays exponentially oth-
erwise (Fig. 2B).

These results highlight the negative aspects of diffusivity for a population and reveal an impor-
tant ecological insight, namely that of a critical patch size. A finite population under the influence
of random mixing must be larger than a minimal extensionL0 in order to sustain a stable popu-
lation. This critical sizeL0 simply scales as the square root of the strength of mixing divided by
the growth rate, (3.12). Despite the model’s simplicity thefundamental results (3.12) and (3.13)
have an important ecological message that prevails in more realistic settings. If a favourable patch
adjoins unfavourable areas, then the higher the diffusivity, the higher will be the loss rate across
the boundaries, thus the larger should be the internal area and the growth rate on the habitat to
compensate for these losses. Moreover, one large patch is better for the persistence of a species
than two smaller patches of the same total size, since two patches would have four ends, that would
double the loss rate. Diamond and May [15], McMurtrie [58], Cantrell and Cosner [8] applied this
concept of a critical patch size to the design of national parks and natural reserves of optimal size
and form.

Logistic growth As the growth of biomass in the KiSS model is not limited, one natural exten-
sion of the KiSS model is to consider a logistic growth function

∂P (x, t)

∂t
= µ0P

(

1 − P

K

)

+ D
∂2P

∂x2
, for 0 ≤ x ≤ L (3.14)

and the same (hostile) boundary conditions (3.8). For this model only approximate solutions are
available (see e.g. [52], [2], [61], [72]). The stationary solution can be expressed in terms of
elliptic functions and was investigated by Skellam [96], Levandowsky and White [54], and Ludwig
et al. [56]. However, applying the invasibility criteria, we can conclude that this system possesses
the same critical values as the KiSS model. Indeed, as the population density approaches zero,
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Figure 3: Dynamics of the population with logistic growth, Eq. (3.14), under different values of
diffusion. (A) Conditions are nearly critical,D = 3.2 . D0. (B) Conditions are sufficiently far
from the survival-extinction transitionD = 0.1 ≪ D0. Other parameters areµ0 = 2, L = 4,
K = 400, thusD0 = 3.24. The horizontal thick black line shows the location of the favourable
patch.

equation (3.14) goes over to equation (3.7). This means thatif a population can invade in the KiSS
model, it will also invade in the model with logistic growth,and vice versa.

Figs. 3 show examples of the population dynamics. In both figures, the resulting population
density has a characteristic shape, with large densities inthe central part of the patch and a decay
of population numbers, the closer one comes to the hostile border. Note, that if the conditions are
close to the critical values (3.12) or (3.13), the growth of biomass becomes limited by the diffusive
transport, and the maximum of density reached by the population can be much smaller than the
carrying capacity. This is illustrated in Fig. 3A wheremax(P (x)) ≈ 6 even thoughK = 400.
However, if the conditions are sufficiently far from the critical region, the carrying capacity is
almost reached in the middle of the patch (Fig. 3B).

To obtain an intuitive understanding into the influence of the density dependence in equation
(3.14) consider a KiSS model with an effective growth rate ofµ∗ = 〈µ0(1 − P (x)/K)〉x, which
equals the average growth rate of the logistically growing population. The new effect now is that
the effective growth rateµ∗ decays with an increase of the population densityP (x). Therefore,
also the maximal diffusivityD∗

0, admitting a survival of the population (3.13), will be a decaying
function ofP (x). This means, however, that the biomass can grow only until the critical diffusivity
is reachedD∗

0(P ) = D. Thereby, if initially (whenP is negligible)D is close to the critical
diffusivity of the KiSS model, a small increase of density isenough to decreaseD∗

0 and to reach
the balance between production and loss.

Finite mortality and other extensions A second unrealistic feature of the KiSS model is the
assumption of infinite mortality outside of the favourable habitat. This assumption does not hold
in many important cases and limits the applicability of the KiSS model. For example, it hardly
could be applied for phytoplankton simulations. Ludwig et al. [56] investigated an extension of
the KiSS model, where this assumption of an absolutely hostile environment was relaxed. In this
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study the authors assumed a positive growth rateµ0 inside and a finite mortalitym outside of the
habitat

µ(x) =







µ0, for 0 < x < L

−m, for x ≤ 0 or x ≥ L .
(3.15)

As the mortality is finite, the organisms can survive outsideof the habitat and diffuse back.
This effect reduces the losses at the edges and the population can survive on a smaller favourable
patch compared to the KiSS model. In the model (3.15) the population can persist if

L ≥ 2

√

D

µ0
arctan

√

m

µ0
. (3.16)

As the mortality approaches infinity this value approaches the critical patch sizeL0 of the KiSS
model.

Many other examples of critical patch models can be found in the books by Okubo and Levin
[72] and Murray [62]. We just briefly mention some extensions. Okubo [68, 70] considered a
model for growth and diffusion under an attractive force toward the centre of a patch. He found
that the modified critical size equalsLc = L0f (v2/4αD), wheref(0) = 1 and the function
f(v2/4αD) monotonically decreases withv toward zero. Gurney and Nisbet [27] considered a
model in which the growth rate parabolically depends on the distance from the habitat centre. This
approach is more realistic since it includes a gradual transition from favourable to unfavourable
areas. Wroblewski et al. [116], Wroblewski and O’Brien [114] and Platt and Denman [81] included
the effect of grazing and obtained an expression similar to (3.12) for the critical patch size, in
which, however,µ0 is replaced byµ0 − g, whereg characterises the grazing rate.

Influence of boundary conditions and spatial arrangement It is interesting to extend the anal-
ysis for more complicated spatial geometries. Seno [93] andCantrell and Cosner [7] investigated
the influence of a spatial sequence of favourable and unfavourable habitats and boundary condi-
tions. Seno considered a population of organisms migratingbetweenn patches of different quality.
Cantrell and Cosner [7] used a mean field representation of this problem. They compared the total
size of a population living on a finite habitat of sizeL, surrounded by either completely hostile
environments or by impenetrable boundaries. Using the logistic model (3.14), they assumed that
the habitat possesses patches of different quality, that is, the growth rate changes between positive
or negative values,µ(x) = ±1, provided that the favourable and unfavourable patches have the
same total area (Fig. 4).

In this model the best spatial configuration of favourable and unfavourable patches depends
on the boundary conditions. If the exterior region is completely hostile then the location of a
favourable patch in the middle of the habitat (Fig. 4A) provides the best conditions for the popula-
tion, as two buffer zones separate the favourable region from the completely hostile regions, which
decreases the population losses. Therefore, the total biomass will be higher than that on the habitat
shown in Fig. 4B, which in turn is more preferable than the habitat shown in Fig. 4C, where two
favourable patches adjoin the hostile surroundings.
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Figure 4: Comparison of several spatial arrangements of favourable (µ(x) = 1) and unfavourable
patches (µ(x) = −1), assuming either lethal boundaries (top) or impenetrableboundaries (bottom)
at the borders of the habitat (x = 0 andx = 1) according to [7]. Plotted is the final population
densityP (x) in model (3.6) assuming logistic growth,µ(x, P ) = µ(x)(1 − P/4) (solid line). The
patch quality,µ(x), is shown as dashed line. Each case is classified either as “most favourable”,
“intermediate” or “less favourable”, reflecting the total amount of biomass.

If however, the boundaries act as a barrier, the maximum biomass is achieved if a favourable
patch directly adjoins one of the impenetrable boundaries (Fig. 4D). Even though the derivation
of this result requires rather sophisticated calculations, it is evident that in this configuration there
is a single favourable patch which has only one border with anunfavourable environment, and
so all possible losses are minimised. By contrast, any splitting of the favourable patch leads to a
worsening of the habitat quality (Fig. 4E and 4F).

It is clear, that the choice of the best arrangement of habitat quality is very important for the
design of national parks, natural reserves, etc. Further, the same mechanism also captures some
aspects of relevance for the vertical distribution and competition of phytoplankton species. In a
water column the surface acts as an impenetrable barrier. Thus, in an incompletely mixed water
column, a more light limited or buoyant species obtains a competitive advantage to another species,
whose favourable patch is located in subsurface layers [34,89].

Arbitrary spatial dependence of the growth rate The behaviour of model (3.6) in the case
where the growth rateµ(x) is an arbitrary function of the coordinates was investigated by Cantrell
and Cosner [9]. Applying separation of variables to the linearised problem it is possible obtain a
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system of equations, similar to (3.10)

T ′

n(t) = λnTn(t)

(3.17)

DX ′′

n(x) + µ(x)Xn(x) = λnXn(x) ,

whereX(x) should again satisfy certain boundary conditions. Now, however,µ(x) 6= const and a
solution to this equation is known only for some partial forms of the functionµ(x). If the principal
eigenvalue of these equations is positive, the stationary solutionP (x) = 0 is not stable, implying
that the population can invade and establish on the habitat.It can be shown that this is always the
case if the average growth rate is positive,

∫

µ(x)dx > 0. However, this condition is not necessary
and does not hold even in the simple models considered before. General conditions of uniqueness
and the existence of positive eigenvalues were obtained by Hess and Kato [29], Senn and Hess
[92], Cantrell and Cosner [9].

The analysis of 2D and 3D models raises even more questions. In higher dimensions the
persistence of a population may depend on the geometric formof the favourable patches [15], the
form of the edges separating the patches and finally it may depend on the behaviour of individuals,
moving across or along the edges [19].

3.2. Persistence on an infinite habitat

Travelling fronts While in the previous section we have highlighted some negative aspects of
diffusion for the fate of a population, in this section we show that depending on the circumstances
diffusion may as well support population growth. Maybe the most drastic example is the possibil-
ity to generate the spread or geographic expansion of a population into a new area. Consider, for
simplicity, an infinite homogeneous habitat which providesa positive growth rateµ0 everywhere.
If, as it is commonly assumed (i.e., there is no Allee effect), the stationary stateP = 0 is unstable,
the appearance of organisms in one spot will lead to their expansion over the whole habitat. As-
suming logistic growth the spatio-temporal dynamics of thepopulation can be represented by the
following equation

∂P (x, t)

∂t
= µ0P

(

1 − P

K

)

+ D
∂2P

∂x2
. (3.18)

which is known as the Fisher-Kolmogorov equation after Fisher [20], who considered the logistic
dynamics of advantageous genes and Kolmogorov et al. [48], who investigated a general form of
this problem (see also [62, 51, 108] ).

Fisher [20] and Kolmogorov et al. [48] have shown that if initially some part of the habitat is
not occupied,P (x) = 0, then the population will propagate into this part with the constant velocity

vf = 2
√

µ0D . (3.19)

This solution is illustrated in Fig. 5A which shows a population propagating from left to right
through a 1D habitat. As will be shown below, the magnitude ofthe propagation velocity is a
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Figure 5: Front-propagation process in the Fisher-Kolmogorov model (3.18). (A) Propagation of
a travelling front, if initiallyP (x, 0) = 0, for x > 0. (B) Propagation of a “pseudo-wave” in the
limit of zero diffusivity, if initially P (x, 0) = 1/(x + 1)5 for x > 0. In both plotsP (x, 0) = 1 for
x ≤ 0.

crucial factor not only for an invasion process but also for the survival of a population in the
presence of drift, sinking or other advective processes [14, 99, 101]. There is a variety of ways to
derive relation (3.19). The more common and rigorous approach suggests to assume a travelling
solution of the formP (x− vt) and then to prove that this solution is stable only ifv = vf (see e.g.
[51]). Below we will provide another heuristic derivation confirming the validity of this expression.

Note that in large aquatic basins the horizontal turbulent mixing increases with the scale of
phenomena [73, 67, 66, 74]. Petrovskii [77, 78] showed that this should result in the increase
of the front propagation velocity. Moreover, this velocityshould grow with the size of the area
occupied by a population.

Pseudo waves We should stress a condition which is sometimes missed. The velocity vf is the
minimal possible propagation velocity, which is realised if the population invades into an empty
area or if, at least, in this areaP (x, 0) decays more rapidly than a Gaussian distribution (see
Fig. 5A). Another pattern of so-called “pseudo-waves” may occur for special initial conditions if
from the start a small amount of biomass is distributed over the whole space. This is illustrated
in Fig. 5B where the initial distribution of biomass is algebraically decaying forx > 0 and so is
visually indistinguishable from that in Fig. 5A. As shown this initial configuration yields a much
faster wave-like spread of the population. Strictly positive initial conditions lead to simultaneous
logistic growth toward the carrying capacity at every position and, even in the limit of zero dif-
fusivity, a wave-like pattern arises because the capacity is reached at slightly different times in
different points and not due to the transport of biomass by diffusion.

Pseudo-waves appear if the time scale of diffusive transport, τD, is slower than the time differ-
enceτdem of demographic processes in the neighbouring points

τD ∼ ∆x2

2D
< τdem ∼ − ∆x

µ(P )P

∂P

∂x
, (3.20)

whereτdem can be found expanding the equationP (x, t) = P (x + ∆x, t + τdem) into a series. It
is easy to check, that for a Gaussian distribution ofP (x, 0) both sides of (3.20) are proportional.
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Figure 6: Schematic presentation illustrating the spread of a population into an oppositely directed
flow of velocity v. Initially the 1D habitat is populated on the left, while theright is not occupied
by the species. In a system without advection the populationwould propagate into the right with
the front velocityvf , given by equation (3.19). This spread is hindered by the advective flow, which
is aimed into the opposite direction. As a result the population front propagates with the reduced
velocityv′

f = vf − v. The population can persist only ifvf ≥ v, otherwise it is washed out.

In contrast, for algebraic or exponential distribution ofP (∆x, 0) the right hand side will be larger
if ∆x exceeds a threshold value. Consequently, the diffusive transport will be always slower than
the time scaleτdem of the demographic process, giving rise to a “pseudo-wave”.

Advection Consider now an extension of the Fisher-Kolmogorov equation for a population which
is additionally subjected to an advective flow with constantvelocityv [63, 64, 14, 99, 101, 4, 50]

∂P (x, t)

∂t
= µ0P

(

1 − P

K

)

− v
∂P

∂x
+ D

∂2P

∂x2
. (3.21)

To investigate the role of advection let us again suppose initial conditions, such that only the
left part of the habitat is populated, while the remaining part is not occupied by the species (see
Fig. 6). In the absence of advection in this system, the population would propagate into the right
with the velocityvf . Now assume that this spread occurs in an advective flow, which is going
into the opposite direction with the velocityv. This can be analysed best by considering a frame
of reference moving parallel to the flow with the same velocity v, so that in this frame the flow
velocity is zero. In the moving reference frame the population dynamics obey equation (3.18)
and the front propagates with the velocityvf given by (3.19). Therefore, in the fixed reference
frame, the propagation velocity is reduced by the velocityv of the advective flow, so that the front
propagates with the velocityv′

f = vf − v.
Obviously, the sign of the reduced propagation velocity determines the persistence of the

species. A negative propagation velocity leads to a population wash-out, whereas a positive prop-
agation velocity results in the invasion of the empty habitat. Thus, on an infinite habitat in an
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advective flow the population can survive only if

v ≤ vf = 2
√

µ0D , (3.22)

or, written in a different form

D ≥ Dmin =
v2

4µ0

, (3.23)

which means that in a flow a population can persist only if the diffusivity exceeds the threshold
valueDmin. Equations (3.22) and (3.23) relate the critical values of diffusivity D and flow velocity
v and illustrate the constructive interplay that can arise inthe presence of both processes, advection
and diffusion. The region in the(v, D)-coordinate plane, where a population can outgrow an
advective flow, is visualized in Fig. 7 (area under the solid line). Note that if the habitat is unlimited
then for any flow velocityv there is a diffusivity which provides the survival of the population. This
transition plays an important role in many ecological situations and constitutes, for example, a
necessary condition for the persistence of a population in ariver [99], as well as for the persistence
of sinking phytoplankton species in a vertical water column[87, 95, 33].

Derivation of the front propagation velocity These results about the spread of a population in
an advective flow can be elegantly used to derive the population spread, Eq. (3.19), in a system
without advection. For these aims we consider the general model

∂P (x, t)

∂t
= µ(x)P − v

∂P

∂x
+ D

∂2P

∂x2
. (3.24)

Here, the local growth term has been linearised for small densities, however we allow for an ar-
bitrary spatial dependence of the growth rate,µ = µ(x). This model can be simplified with the
following transformation

P (x, t) = exp
( vx

2D

)

P̃ (x, t) . (3.25)

The aim of this ‘trick’ is to eliminate the advective term andas a result we obtain the following
equation of a system without advection, however with a modified growth term

∂P̃ (x, t)

∂t
=

(

µ(x) − v2

4D

)

P̃ + D
∂2P̃

∂x2
. (3.26)

Note that the transformation (3.25) should be applied also to any boundary conditions of the origi-
nal system and may alter them. However, if we can neglect the influence of boundaries (e.g. if the
habitat is infinite, but still heterogeneous) advection obtains a very simple ecological interpretation
as an additional mortality of strengthv2/4D. This means that the presence of advection effectively
reduces the growth rateµ(x), and this effect increases asD → 0.

Now we can “derive” the velocityvf of the front propagation in the Fisher-Kolmogorov equa-
tion. On a homogeneous infinite habitat (µ(x) = µ0) the population can survive only if the growth
rate is positive. Thus, using (3.26) the velocity should be constrained

v ≤ 2
√

µ0D.

However, as we showed before, the maximal possible advection velocity,v, is equal to the front
propagation velocity,vf , which finally leads us to formula (3.19).
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3.3. Finite habitats in an advective flow: the “drift paradox”

While the Fisher-Kolmogorov equation (3.18) assumes an infinite homogeneous habitat, such con-
ditions are a strong idealisation for most natural populations. To describe some more realistic
situations, in the following we investigate the role of advection for a population in a heterogeneous
environment which is additionally constrained by certain boundary conditions.

Separation of variables Consider again the general model (3.24) of the previous section, which
now is supposed to be complemented by some boundary conditions. Again we use the change
of variables (3.25) to eliminate the advection term. The linear form of equation (3.26) allows
a separation of variables̃P (x, t) = X(x) T (t) and by comparison to Eq. (3.17) we obtain the
eigenvalue problem for the time-independent eigenfunctions

DX ′′(x) + µ(x)X(x) =

(

λv +
v2

4D

)

X(x) , (3.27)

while the equation forT (t) remains unchanged. Here,λv denotes the eigenvalues for the problem
in the presence of advection. Furthermore,X(x) should satisfy certain boundary conditions, which
depend on the boundary conditions obtained forP̃ (x, t). If we introduceλ = λv + v2/4D this
equation will take the form of the second equation of system (3.17) for the problem without flux.
Thus we can conclude that the presence of advection for a population under boundary conditions
simply reduces the eigenvalues [24, 64, 14]

λv = λ − v2

4D
.

With the same arguments as in Section 3.1., to provide the persistence of a population, the
largest eigenvalueλv must be positive. Therefore, a population is only able to persist in a flow if
the proper model without flow has the principal eigenvalue

λ∗ ≥ v2

4D
. (3.28)

KiSS model with advection As a simplest example, consider the KiSS model (3.7) in the pres-
ence of an advective flow. Recall, that this model describes apopulation on a finite favourable
patch provided that the population density vanishes at the boundaries. These boundary conditions
(P (0, t) = P (L, t) = 0) are not changed by the coordinate transform (3.25), so thatthe functions
P̃ (x, t) andX(x) also must vanish at the boundaries. Therefore, we will obtain the same expres-
sion (3.11) for the eigenvalue spectrum with the dominant eigenvalueλ∗ = µ0 − π2D/L2. Taking
into account (3.28), we can easily derive the conditions forthe persistence of a population on a
finite favourable patch in an advective flow

v ≤ vf = 2
√

Dλ∗ = 2

√

D

(

µ0 −
π2D

L2

)

. (3.29)
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This expression describes a semi-circle in the(D, v) parameter plane (see dashed line in Fig. 7).
Note that asL approaches infinity orD approaches zero, the maximal velocity (3.29) goes over
to the condition (3.22). This means that in the limit of smalldiffusivity (D ≪ µL2/π2) the
conditions for survival on a finite patch are almost the same as those on a homogeneous infinite
habitat. Thus, for smallD the two critical curves in Fig. 7 almost coincide and show a similar
behaviour. For larger diffusivity, however, these curves diverge because a finite habitat provides a
slower propagation velocity (3.29) than an infinite habitat(3.22). Finally, for large values ofD the
increase of the losses across the habitat edges results in the upper diffusivity limitDmax on a finite
habitat.

Solving this inequality forD, we obtain a limiting intervalDmin(v) ≤ D ≤ Dmax(v), with

Dmin/max =
D0

2

(

1 ±
√

1 − π2v2

L2µ2
0

)

. (3.30)

Here,D0 is the critical (maximal) diffusivity (3.13) in the KiSS model. The interval[Dmin, Dmax]
specifies the limits of mixing intensity which prevent the population wash-out (D > Dmin), but
still enable the persistence of the population on a finite patch (D < Dmax). These values are real
only if

v ≤ vmax =
Lµ

π
. (3.31)

Note that the critical velocityvmax is a threshold when the characteristic time scale of growth
τgr = 1/µ becomes slower than the time scale of advectionτv = L/v. If v > vmax the population
cannot persist, because on the one hand the large advection requires a strong mixing intensity to
provide the expansion of organisms upstream, but on the other hand such mixing increases the
transport of organisms into unfavourable areas and the population becomes extinct.

Critical patch size In the following we investigate the influence of advection onthe critical
patch size in the KiSS model (3.7) and in the model by Ludwig etal. (3.15). In the first model
the population vanishes at the habitat edges, whereas in thesecond the population density should
vanish whenx → ±∞. Therefore, in both models the transformation (3.25) does not alter the
boundary conditions and the presence of an advective flow simply reduces the growth rateµ. This
leads to the effective growth rate

µv
0 = µ0 −

v2

4D

in the KiSS model and to

µv(x) =



















µ0 −
v2

4D
, for 0 < x < L

−
(

m +
v2

4D

)

, for x ≤ 0 or x ≥ L ,

in the model by Ludwig et al.
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Figure 7: Parameter regions which permit the persistence ofa population in an advective flow.
Persistence of the population is possible below the critical curves in the(D, v)-parameter plane.
Two different scenarios are compared. The solid line shows the persistence regime for an infinite
uniform habitat (cross and diagonal hatching). In this casethe limiting velocity scales as the
square root of diffusivityv ∼

√
D, equation (3.22). In comparison, the dashed line shows the

result for the persistence of a population on a finite favourable patch with lethal boundaries (cross
hatching). Here, the persistence regime yields a semi-circle in the parameter plane, equation (3.30).
Assuming intermediate growth conditions, e.g. similar to the model by Ludwig et al. (3.15), one
should expect the critical curve to be located somewhere in-between the solid and the dashed line.

Substituting the modified growth rateµv into equation (3.26), we find similar expressions for
the critical patch size as in Eqs. (3.12) and (3.16), whereµ should be replaced byµv. Thus, for the
KiSS model in an advective flow the critical patch size equals

Lv
0 = π

√

D

µv
0

= π

√

D

µ0 − v2/4D
=

2πD
√

v2
f − v2

, (3.32)

and for the model by Ludwig et al. we obtain

Lv =
4D

√

v2
f − v2

arctan

√

4mD + v2

v2
f − v2

, (3.33)

wherevf = 2
√

Dµ0. Note that bothLv
0 and Lv approach infinity asv → vf . In particular,

this can happen ifD → Dmin = v2/4µ0 which is of importance in marine biology as climate
models predict that the ongoing global warming may result ina higher stratification of the ocean
water [6, 91], increasing thereby the requirement on the critical (vertical) patch size for sinking
phytoplankton species.
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Persistence in a river Speirs and Gurney [99] investigated the conditions for the population
survival in a river of lengthL and with a flow velocityv. This problem is known as the “drift
paradox” because any advection will ensure that the averagelocation of a population will move
downstream, so at first glance it seems counter-intuitive that a population can persist in a river
[28]. In their study Speirs and Gurney used the linear model (3.24) and assumed an impenetrable
boundary upstream and a totally hostile environment downstream. In this model the critical sizeLv

of the favourable patch depends on the ratio between the flux velocityv and the front propagation
velocityvf

Lv =
2D

√

v2
f − v2

arctan

√

v2
f − v2

v2
.

Note thatLv again increases with an increase of the advection velocityv and approaches infinity
asv → vf . Furthermore, because the favourable patch in this model has only one boundary with
the hostile environment, we obtain the limitLv → L0/2 asv → 0, whereL0 is the critical patch
size (3.12) of the KiSS model.

Extending this model, Pachepsky et al. [75] derived conditions for the persistence and spread
of a population of organisms living and reproducing on the sediment and occasionally entering the
water flow where they can drift and disperse.

Locally elevated growth rate Dahmen et al. [14] considered another extension of the modelby
Ludwig et al. (3.15), assuming an advective flow and periodicboundary conditions. Furthermore
they suggested a simple experimental set-up in which a lightlimited colony of bacteria grows on
a ring. Almost the whole ring is shaded and unfavourable for the population. Only a small area is
illuminated through a window of lengthL, which moves around the ring with a constant velocity
v. Up to a change of reference frame, this set-up is equivalentto an advective flow and, changing
the speedv, one can easily regulate the “advection” rate.

Depending on the parameters and the velocity of the light supply, the population can become
extinct, can be localised (the maximum of density tracks thelocation of the favourable patch), or
delocalised [64] (due to the periodic boundary conditions the population can survive even if the
advection velocityv exceeds the propagation velocityvf provided that the average growth rate is
positive). Fig. 8 shows an example for such a localisation.

Solving the eigenvalue problem Dahmen et al. exploited a similarity of equation (3.27) to
the well studied “square well potential” problem of quantummechanics [53]. They showed that
depending on the dimensionless parameterx = (2/L)

√

D/(µ0 + m), which characterises the
growth rate in relation to the diffusivity and the habitat length, the critical flow velocity can be
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Figure 8: Locally elevated growth rate provides the persistence of a population in an advective
flow with velocityv, Dahmen et al. [14]. A favourable patch (µ(x) = µ0 > 0) is indicated by the
horizontal thick line.

expressed as

vc = 2

√

D

(

µ0 −
Dπ2

L2

)

, if x ≪ 1

vc = 2D

√

√

√

√

(

[

(µ0 + m)L

2D

]2

− m

D

)

, if x ≫ 1

(3.34)

where all parameters have the same meaning as in (3.15). The first solution also corresponds to
the limit of high mortality (m → ∞) and coincides with equation (3.29), which was derived for
the KiSS model with advection. The second solution describes a strongly mixed system. If the
advection velocity is higher, the population becomes extinct. The value of the critical patch size
and the critical diffusivity can be easily expressed from equation (3.34).

Examining bacterial growth, Lin et al. [55] confirmed the results of Dahmen et al. [14] ex-
perimentally and by means of numerical simulation. Joo and Lebowitz [43] carried out computer
simulations in a stochastic spatially discrete populationmodel and obtained similar results, con-
firming the robustness of the model.

Locally elevated diffusivity Consider a population growing on an infinite favourable patch in an
advective flow. If the diffusion is too low this patch will notprovide a proper propagation velocity
(3.19) and the population will become extinct. Straube and Pikovsky [101] noted that locally
increased diffusivity can drastically change the situation. A sufficiently large and well mixed patch
can stop the drift of biomass, stabilising the population dynamics downstream (Fig. 9). Straube
and Pikovsky considered the Fisher-Kolmogorov equation with advection (3.21), assuming that a
patch of lengthL has an elevated level of diffusivityD1, which exceeds the diffusivityD in the rest
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Figure 9: Locally increased diffusivity stops the population wash-out in an advective flow with
velocityv, according to Straube and Pikovsky [101]. The horizontal thick black line indicates the
location of the patch with increased diffusivityD1.

of the habitat. Note that if the diffusivity depends on the coordinate,D = D(x), equation (3.21)
takes the form

∂P (x, t)

∂t
= µ0P

(

1 − P

K

)

− v
∂P

∂x
+

∂

∂x

[

D(x)
∂P

∂x

]

.

Straube and Pikovsky [101] showed that the population survives, if the size of the intensively mixed
patch is larger than

Lcr =
2D1

√

4µ0D1 − v2
arctan

√

v2 − v2
f

4µ0D1 − v2
.

As the diffusivityD1 approaches infinity the critical patch size approaches

lim
D1→∞

Lcr =

√

v2 − v2
f

2µ0
.

Thus, even for the infinite mixing intensity the critical patch should be of finite size.

Techniques from quantum mechanics Birch et al. [4] considered the Fisher-Kolmogorov equa-
tion with variable growth rate and advection on a 2D plane. Inthis study they made use of the struc-
tural similarity between equation (3.27) and the time-independent Schrödinger equation. Based on
this similarity, they demonstrated a few examples where theapplication of perturbation theory, the
method of Wentzel, Kramers, and Brillouin (WKB), and other quantum mechanical techniques are
beneficial for the analysis of equations similar to (3.27). In particular, Birch et al. were able to de-
termine a trade-off between the critical diffusivity and growth rate, which provide the persistence
of the population in this system. We believe that the application of such well-known techniques
from quantum mechanics has not been fully exhausted yet. Such methods could be a promising
direction for the further development of the theory of extended populations.
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Summary At the end of this section we want to summarize the main results. On an infinite
homogeneous patch a stationary state is achieved when the growth rate is equal to the mortality.
On a finite patch, which adjoins some unfavourable environment, the growth rate should exceed
mortality to compensate for losses across the patch edges. The internal patch production grows
with the patch size and with the growth rate, whereas the losses at the edges increase with the dif-
fusivity. The spread of organisms over a habitat is defined bythe propagation velocity of the front
of the population density. This velocity scales as a square root of the growth rate and diffusivity. A
population can survive in a flow only if the propagation velocity is higher than the velocity of the
flow.

Thus, an increase of the growth rate improves the conditionsfor the survival on a finite favourable
patch and in a flow. The increase of the patch size increases the internal patch production, whereas
the losses across the patch edges show only a weak dependence. The critical patch size is achieved,
when the internal production is balanced by the external losses. The size of a large habitat has
a small influence of the propagation velocity. However, an unfavourable environment around a
small favourable patch truncates the propagating front, this can essentially reduce the propagation
velocity and worsen the conditions in a flow. Finally, an increase of diffusivity on a finite habitat
increases the losses into the unfavourable environment, which can lead to the population extinc-
tion. However, a minimal level of diffusivity is necessary to prevent the population wash-out in a
flow. These two opposing processes result in a diffusivity window, which provides the population
survival on a finite habitat. This window exists only if the flow velocity is less than some critical
value.

4. Vertical phytoplankton distribution

In the previous chapter, using simple one-dimensional models, we discussed the influence of mix-
ing and advection on the population survival in a heterogeneous environment. To model a non-
uniform environment, we simply used an explicit form for thegrowth rate,µ(x), however we did
not discuss the origin of this heterogeneity. In this chapter we extend these results by considering
more complex models which describe resource limited population growth. These models are based
on simple physical and biological laws and consistently describe the dynamics of a population and
its limiting resources. Thus, they demonstrate natural mechanisms which lead to the appearance of
favourable patches. The intention of this chapter is twofold: on the one hand we aim to illustrate
how the main findings of the previous chapter apply to the context of consumer-resource models.
On the other hand we show new effects arising due to new properties, which are not present in the
simple models.

The main object, which we will use for illustration, is the dynamics of a vertical phytoplankton
distribution. This is important as phytoplankton are the primary producers in almost all aquatic
food webs with a major influence on nearly all freshwater and marine ecosystems. The two main
factors limiting the production of phytoplankton are the availability of nutrients and light. To un-
derstand how these resources affect the phytoplankton biomass, consider their distributions in a
water column. In general, the light intensity reduces with depth and, in nutrient rich regions of the
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ocean, the well illuminated surface layer constitutes a favourable area for photosynthetic phyto-
plankton species. By contrast, the nutrient concentrationcan behave just in the opposing way. The
sedimentation of dead biomass (detritus), with the successive remineralisation in the deep layers or
in the sediment [16] causes an increase of the nutrient concentration with depth [117]. Thus, while
light limitation may lead to the formation of a surface phytoplankton maximum, a lower nutrient
concentration favours a phytoplankton build-up in deeper layers. This tension between light and
nutrient limitation from two opposite sides frequently causes optimal growth conditions in subsur-
face layers (e.g. [1, 13, 31]). This fact often leads to the appearance of maxima of chlorophyll
or biomass distributions at approximately 30-100 m depth. So called deep chlorophyll maxima
(DCM) [1, 111, 13, 110, 31] and deep biomass maxima (DBM) [49,5] are ubiquitous phenomena
and can be observed in many oligotrophic regions in the ocean, marine systems, and deep lakes.

Another important component of a stratified water column is an upper mixed layer (UML). A
UML commonly occurs in oceans and lakes due to mechanical perturbation of the surface waters
(e.g. due to wind, waves, and storms). This layer is separated from the deep layers by a thermocline
[12], which is defined as a relatively thin layer below a UML characterised by an strong change
in temperature with depth. Mixing in a UML is much stronger than in the layers below it. As a
result, the distributions of nutrients, temperature, salinity, etc. are nearly uniform in a UML and
have gradients below it. The depths of a UML can usually vary from 10 m to 100 m, see e.g. [110].

Compared to the models of the previous chapter, the system behaviour in a water column can
be further complicated due to a feedback loop between the biomass and resource distributions. The
growing biomass shades light, consumes nutrients and is remineralised, which ultimately changes
the total resource distribution. This, in turn, can lead to anew biomass distribution, which will
generate a new resource profile and so on. As will be shown below, these complicated, self-
organised dynamics can lead to new phenomena and diverse behaviour. For example, if the mixing
is small, the final solution becomes non-stationary and oscillates [36], whereas in the presence of
an upper mixed layer the system may exhibit bistability and the solution may be sensitive to the
initial conditions [118, 89].

Equation of growth To formulate a mathematical framework for this chapter, letus consider a
vertical water column of depthZB. Let P (z, t) denote the density of phytoplankton at timet and
depthz. Note thatz = 0 denotes the sea level surface and thez-axis is directed downward. For
the sake of simplicity, assume that phytoplankton growth islimited only by the availability of light
and a nutrient (the model can easily be extended to take into account multiple nutrient limitation
[26]). In our approximation the dynamics of a phytoplanktonpopulation obey a reaction-diffusion-
advection equation, similar to equation (3.1) considered in the previous chapter (see [85, 95, 46, 36]
among others)

∂P (z, t)

∂t
= µ(N, I)P − mP − v

∂P

∂z
+

∂

∂z
D

∂P

∂z
, (4.1)

wherem is the mortality (compare to equation (2.3)),v is the phytoplankton sinking velocity, and
D is the diffusivity, which in general can depend onz.

Furthermore, the growth rateµ(N, I) depends on the local values of light intensityI(z, t) and
nutrient concentrationN(z, t) at each vertical position. If both nutrients are essential,µ(N, I) can
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be represented in the form of Liebig’s law of minima

µ(N, I) = µ0 min [fI(I), fN(N)] . (4.2)

It can be also written in the multiplicative form

µ(N, I) = µ0 fI(I) fN(N) . (4.3)

Hereµ0 is the maximum growth rate andfI(I) andfN (N) describe the limitation by light and
the nutrient. The specific form of these functions depends onmany factors, for instance, strong
light may photoinhibit photosynthesis and reduce the growth rate for large values ofI [83, 22, 86].
However, usually it is suggested thatf(x) → 1 asx → ∞, that is, the maximum growth rate is
achieved when all resources are unlimited. For phytoplankton modelling, the most frequently used
form is the Monod (or Michaelis-Menten) kinetics [107]

fI(I) =
I

HI + I
, fN(N) =

N

HN + N
, (4.4)

whereHI andHN are the half-saturation constants for nutrient-limited and light-limited growth,
respectively. However, this non-linear form often admits only numerical investigation. Analytical
solutions are commonly possible only for a linear or algebraic form of f(x) [95, 17].

Boundary conditions By default, we assume that the surface and bottom are impenetrable for
phytoplankton

(

vP (z, t) − D
∂P

∂z

)
∣

∣

∣

∣

z=0,ZB

= 0 . (4.5)

To model a stratified water column, one can either separatelysolve the equations in a UML
and below it, supposing infinite mixing within the UML and a small diffusivity DD in deep layers.
Assuming continuity of the flux across the thermocline, we obtain the boundary condition at the
bottom of a UML (see e.g. [35])

vP (z)|z=ZT−0 =

(

vP (z) − DD
∂P

∂z

)
∣

∣

∣

∣

z=ZT +0

,

whereZT is the depth of the thermocline. On the other hand, to simulate the water column in a
single framework, one can assume a gradual transition from aUML to the deep layers [89]

D(z) = DD +
DU − DD

1 + e(z−ZT )/w
, (4.6)

whereDU andDD are the diffusivities within and below a UML, respectively,and the parameter
w characterizes the width of the thermocline.

So far, we did not specify any equations for the distributionof nutrientsN(z, t) and light
I(z, t). In the next two sections we will review several models whichcouple the light and nutrient
dynamics with phytoplankton growth (4.1). First we will consider models in which phytoplankton
growth is limited only by the light availability, whereas ina second step, we will review more
complex models, incorporating both light and nutrient limitation.
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4.1. Light limitation

In this section we will consider theoretical models in whichthe light gradient is a key factor. Such
models give an adequate description for eutrophic aquatic environments (as observed in many re-
gions), where the nutrients are in ample supply and light becomes a crucial factor which determines
the distribution and the dynamics of phytoplankton [59, 90,11]. So in the following we assume
that the nutrient dependence of the growth rate is saturated, fN(N) → 1, and we can neglect the
limitation of growth by nutrients.

The spatial profile of light intensity in a water column is described by Lambert-Beer’s law (see
e.g. [45]) which states that the gradient of light intensityat depthz is proportional to the light
intensity at this depth

dI

dz
= −κI . (4.7)

The coefficientκ includes both the absorption of light by water and the attenuation by the phyto-
plankton cells

κ = Kbg + kP (z, t) ,

whereKbg is the background turbidity andk is theper capitaattenuation coefficient of the algae
cells. Integrating (4.7) from surface to depthz, we obtain

I(z) = Iin exp

[

−Kbgz −
∫ z

0

kP (t, z′)dz′
]

, (4.8)

whereIin is the light intensity at surface.
Equations (4.1) and (4.8), being coupled by means of the growth rate (4.2) or (4.3), yield an

integro-differential system of equations. It is not straightforward to obtain rigorous or analytical
results for such a system and even a numerical solution encounters certain difficulties [35, 103].
Nevertheless, without solving any equations, it is clear that the light intensity in the water column
is reduced with increasing depth. Thus the light limitationforms a favourable area close to the
surface, and the dynamics of the phytoplankton population should be related with the results of
the previous chapter, obtained for heterogeneous environments in the presence of advection and
diffusion.

Critical values for phytoplankton growth Depending on the depth of a water column or on the
diffusivity, a light limited phytoplankton population cansurvive or become extinct. Huisman et al.
[33, 35] combined the conditions for survival into a single conception of the critical conditions for
phytoplankton blooming in a closed water column (Fig. 10A) and within an UML (Fig. 10B). The
main difference between these models is that in a closed system, the sinking of cells is stopped at
the bottom, whereas in an UML the biomass can sink across the thermocline to the deep aphotic
layers.

To determine these conditions, consider first an unstratified water column with a constant dif-
fusivity and assume impenetrable boundary conditions (4.5) for the phytoplankton biomass. Using
the system of equations (4.1) and (4.8) in the limit of zero background turbidity,Kbg = 0, and for
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Figure 10: Critical conditions for phytoplankton blooming: (A) in a closed water column and (B)
in an upper mixed layer. Both figures are reprinted from Journal of Sea Research,48, Huisman
and Sommeijer, pp. 83-96 [35], Fig. 4 and 6, with permission of the author.

a general monotonic growth rateµ(I), Shigesada and Okubo [95] showed that a sinking phyto-
plankton species can establish a population only if

D ≥ Dmin =
v2

4(µ(Iin) − m)
. (4.9)

This expression coincides with condition (3.23) from the previous chapter and implies that the
minimal diffusivityshould provide a front propagation velocity which is largerthan the sinking
velocity. The same condition was derived earlier by Riley [87] and other authors from the Fisher-
Kolmogorov equation. It is interesting to note [95] that ifKbg = 0 and a non-trivial solution
exists, then the total biomass in this model does not depend on the sinking velocity. The sinking
just shifts the bulk of biomass downward, preserving, however, the total amount of biomass in the
water column (Fig. 11A).

Ishii and Takagi [40] relaxed the conditionKbg = 0 and proved some existence, stability and
uniqueness results for this system. Assuming an algebraic form of the growth rate,µ(I) ∼ Iα,
Ebert et al. [17] have found some approximation for the minimal diffusivity, Dmin, and for other
critical parameters.

If a water column is sufficiently deep andKbg 6= 0 then the net production rate is positive only
above thecompensation depth, Zc, which is defined as the depthz at which the local production
rate is zero in the absence of biomass (Fig. 11B). From the light attenuation curve (4.8) we find

Zc =
ln Iin − ln Ic

Kbg
,

whereIc is defined as the compensation light intensity at which the growth rate is equal to mortality,
µ(I) = m, thereby the compensation depth is species specific.
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Figure 11: (A) Vertical profiles of phytoplankton for different values of the dimensionless sinking
velocityω = v/µ0D [95]. While the shape of the profile is changed, the total amount of biomass
in the system remains unchanged. The figure is reprinted fromJournal of Mathematical Biology,
12, Shigesada and Okubo, pp. 311-326 [95], Fig. 4, with permission of the author. (B) Schematic
representation of the compensation depthZc and the critical depthZcr.

If a water column is shallower than the compensation depth and we assume that the bottom is
impenetrable for the biomass, then the population can survive even if mixing is less than a minimal
diffusivity (4.9) because the cell settling will be stoppedat the bottom (Fig. 10A).

In general, the compensation depth divides a water column into a favourable and an un-
favourable regime (Fig. 11B). In a well mixed water column the losses in the deep layers can
lead to the population extinction. However, they can be compensated by the production in the
euphotic zone, if the unfavourable region is relatively small. Considering a simple mathematical
model of a well mixed water column Sverdrup [102] defined acritical depthas the depth of a water
column at which the total growth is equal to the total loss of biomass. Similar to the compensation
depth, the critical depth can be reinterpreted in terms of the critical light intensity [37]

Zcr =
ln Iin − ln Iout

Kbg
,

whereIout is the light intensity at the bottom of a sufficiently shallow(ZB < Zcr) closed water
column after the light limited population of phytoplanktonhave reached an equilibrium state. The
critical depth depends on many parameters, it increases with the incident light intensity and with
the phytoplankton growth rate, and it decreases with the mortality rate [37].

In a well mixed water column, an excess of the critical depth over the compensation depth
determines the maximal possible losses in dark layers, which can be still compensated by the
production in the euphotic zone. However, similar to the KiSS model or to the model by Ludwig
et al. (see Sec. 3.1.) these losses diminish with a decrease of mixing. Extending this research,
Huisman et al. [37] showed that if the depth of a water column or a thermocline exceeds the critical
depth, the population survival still is possible if turbulent mixing is less than amaximal diffusivity.
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This critical condition is similar to the existence of the maximal diffusivity (3.13) and (3.30) in the
KiSS model, however here it describes the behaviour of a morerealistic system. Therefore similar
to the KiSS model in advection (3.30), a sinking population can survive in a water column of any
depth if mixing remains between a minimal and a maximal value(Fig. 10A).

We now turn to a stratified water column with a UML. We assume that the mixing in the
deep layers is less than a critical value (4.9), so that the population survival will depend on the
characteristics of a UML. Condie and Bormans [12] showed that if a UML is shallower than

ZT,min ≈ v

µ(Iin) − m
,

a population cannot survive (compare with (3.31)). In otherwords, for the survival in a UML,
the demographic time scale should be faster than the characteristic time of advection. However
usually,ZT,min is sufficiently small and this criterion is satisfied. In thiscase the population can
persist if the strength of mixing remains within the turbulent window[Dmin, Dmax] (see Fig. 10B).
Furthermore, if the diffusivity exceeds a maximal value thepopulation survives if the depth of a
thermocline is smaller than amaximal depth, which is defined as the maximal depth of a well mixed
upper layer at which losses and production are equal. This depth is slightly smaller than the critical
depth in a closed water column, owing to additional losses ofbiomass across the thermocline.

The fact that a deep upper layer can prevent phytoplankton blooming was noted experimentally
in 1935 by Gran and Braarud [23], who investigated the conditions of phytoplankton blooming in
the upper mixed layer. They reported that until there existsa deep UML, phytoplankton production
cannot exceed the destruction by respiration and phytoplankton blooming is not possible. The
concept of the maximal diffusivity is also consistent with field experiments, see e.g. [106, 18, 76].

4.2. Light and Nutrient limitation

In the last section we will discuss models which take into account both light and nutrient limita-
tion of phytoplankton growth. These models are more difficult to analyse and often admit only
numerical investigation. However, they are more realisticand provide some understanding of the
processes occurring in deep waters of many regions where surface layers are nutrient depleted
[85, 113, 82, 115, 112, 109, 36]. Furthermore, in the tensionof two opposing resource gradients
the location and the size of a production layer becomes a function of the phytoplankton abundance
and the initial conditions, that can lead to new patterns andnew dynamical behaviour.

A coupled system of reaction-diffusion equations describing nutrient-phytoplankton cycling
was probably first investigated by Okubo [69, 71]. Radach andMaier-Reimer [85] suggested
a mathematical model of phytoplankton growth which included light-nutrient-phytoplankton dy-
namics. This model was extended by Jamart et al. [41] who considered limitation by two nutri-
ents, grazing and the variability of the parameters with depth and time. This approach (see also
[113, 82, 115, 112]) gave rise to a growing set of ecological models, which include cycling of
many chemicals [117], coupling with meteorological data [42], interplay of different phytoplank-
ton groups, and 3D simulations [60, 21]. Here, however, we will focus on the theoretical aspects
and consider only simple conceptual models.
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Conservative models The nutrient dynamics include uptake by phytoplankton, remineralisation
of dead biomass back into a nutrient pool and diffusion. Assuming absolutely effective recycling
we obtain

∂P (z, t)

∂t
= µ(N, I)P − mP − v

∂P

∂z
+ D

∂2P

∂z2
,

(4.10)
∂N(z, t)

∂t
= −µ(N, I)P + mP + D

∂2N

∂z2
,

where the biomass is measured in terms of its nutrient content (compare to the non-spatial version
(2.3) of this model). We do not include advection in the second equation, as nutrients, which are
dissolved in water, are only slightly influenced by the gravity force. Nevertheless, this term should
appear, if advection is caused by a vertical or horizontal stream.

Furthermore, we assume that the nutrient cannot diffuse across the surface and a large nutrient
pool in the sediment or in deep ocean layers sustains a constant concentration,NB, the bottom of
the water column

∂N(0, t)

∂z
= 0 , N(ZB, t) = NB . (4.11)

Fig. 12 shows typical final distribution of phytoplankton and nutrient given by model (4.10),
supplemented by equation (4.8) for light. Hodges and Rudnick [30] pointed out that, independent
of the functional form of the growth rate and of the light distribution (assuming that light decreases
with depth), this model can reproduce a deep stationary phytoplankton maximum only ifv > 0.
In other words, the presence of opposing resource gradientsis not sufficient to reproduce a deep
phytoplankton maximum. To prove this, let us define the totalconcentration of the nutrient as
S = P + N . Consider an equilibrium state, when the left-hand-side of(4.10) equals zero. By
adding both equations (4.10) we obtain

D
∂2S

∂z2
− v

∂P

∂z
= 0 .

Assumingv = 0 and integrating this equation overz we find

∂S

∂z
= const =

∂P

∂z
+

∂N

∂z
= 0 ,

owing to the boundary condition (4.5) and (4.11) at the surface. ThusS = N + P = const and a
deep phytoplankton maximum should be accompanied by a deep minimum of nutrient. However,
if the light intensity reduces with depth, this profile is unstable because there is no factor limiting
phytoplankton growth in the upper layer. Thus this system should exhibit a surface maximum
(Fig. 12A). However, similar to the model without nutrient limitation (Fig. 11A), the phytoplankton
sinking shifts the maximum of biomass downwards (Fig. 12B).

Extending this model, Hodges and Rudnick [30] included a detrital pool,T (z, t), as the third
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A B

Figure 12: (Colour online) Typical distributions of phytoplankton (green), nutrient (blue), and
light (red) in the conservative model (4.10) without sinking (A) and with sinking (B), according to
Hodges and Rudnick [30].

compartment
∂P (z, t)

∂t
= µ(N, I)P − mP −vP

∂P

∂z
+ D

∂2P

∂z2
,

∂T (z, t)

∂t
= mP − rT −vT

∂T

∂z
+ D

∂2T

∂z2
,

∂N(z, t)

∂t
= −µ(N, I)P + rT +D

∂2N

∂z2
,

(4.12)

wherevP andvT are the sinking velocities of phytoplankton and detritus respectively. Note that
usually detritus sinks much faster than phytoplankton [94,84]. In this model the cycle of chemicals
includes three stages: the transfer of biomass to detritus with mortalitym, the remineralisation of
detritus back into nutrients with remineralisation rater, and finally the consumption of nutrient
by biomass. While this model can exhibit deep maxima ifv = 0, the change of phytoplankton
concentration is very small and cannot represent real data.An apparent maximum can be observed
only if one assumes sinking of detritus or phytoplankton. Hodges and Rudnick extended this state-
ment to any number of compartments, which however do not include depth dependent parameters.
Thus, sinking is a major component of this system. The sedimentation of organic matter removes
the nutrient fixed in phytoplankton cells from the upper layer, which leads to the formation of deep
phytoplankton maxima.

Beckmann and Hense [3] performed numerical simulations andanalytical evaluations of model
(4.12), assuming that detritus sinks relatively fast, whereas the phytoplankton sinking is negligible.
Fig. 13 reproduces a typical distribution of physical characteristics in this model. Furthermore,
Beckmann and Hense suggested to extend the concept of compensation depths. Instead of the static
definition in the absence of biomass they suggested to use twodynamical depths at which thein situ
production rate of phytoplankton is zero, owing to the lightor nutrient limitation. If phytoplankton
sinking velocity is zero then in equilibrium (see (4.12)) these values can be expressed from the
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Figure 13: (Colour online) Typical distributions in the three compartments model (4.12). (A)
Vertical profiles of phytoplankton (P ), detritus (D), nutrient (N), and light (I). (B) The upper
and lower limits of the production layer (dashed lines) are the species compensation depths. The
figures are reprinted from Progress in Oceanography,75, Beckmann and Hense, pp. 771-796 [3],
Fig. 2, with permission of the author.

phytoplankton distribution

∂2P

∂z2

∣

∣

∣

∣

Z
(N)
c

= 0 ,
∂2P

∂z2

∣

∣

∣

∣

Z
(I)
c

= 0 ,

whereZ
(N)
c andZ

(I)
c are the compensation depths due to nutrient and light limitation (Fig. 13B).

Non-conservative models Model (4.12) contains three reaction-diffusion equationsand an equa-
tion for the light distribution. This makes further analysis difficult. However, since detritus sinks
relatively fast [94, 84], we can simplify the model assumingthat a partε of the dead biomass is
instantly remineralisedin situ, whereas the rest sinks until it reaches the bottom and sustains a con-
stant nutrient concentration at the bottom. Thus we obtain the following non-conservative system
of equations

∂P (z, t)

∂t
= µ(N, I)P − mP − v

∂P

∂z
+ D

∂2P

∂z2
,

(4.13)
∂N(z, t)

∂t
= −µ(N, I)P + εmP + D

∂2N

∂z2
.
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This model (compare to equation (2.7)) can reproduce deep phytoplankton maxima even if the
sinking velocity is zero, owing to the fact that a part(1 − ε) of the fixed nutrient is implicitly
transferred from the upper layer to the bottom. Even though this model is non-conservative and
has apparent disadvantages, it or similar models were successively applied to reproduce field data
[41, 109, 36, 118]. However, we are not aware of any comparison of the two model classes (4.10)
and (4.13), which might be interesting.

In the case of zero sinking velocity, Klausmeier and Litchman [46] performed analytical calcu-
lations for model (4.13). Assuming that the phytoplankton distribution can be approximated by a
Dirac δ-function and further that an infinitely small production layer should be located to balance
the light and the nutrient limitation, Klausmeier and Litchman found an equation for the position
Z∗ of a deep maximum, which for boundary conditions (4.5) and (4.11) reads as

ln (Iin/Ic)

k
− Kbg

k
Z∗ =

µ0D(NB − Nc)

m(1 − ε)(ZB − Z∗)
,

whereNc andIc are the critical values of light and nutrient intensity for which the growth rate is
equal to the mortality rate.

Oscillations and chaos Huisman et al. [36] pointed out that system (4.13) exhibits oscillations
of biomass if the mixing is reduced below a critical value. Fig. 14 shows the behaviour of biomass
and of nutrient in two typical cases. In the first case (Fig. 14a) the mixing intensity is high enough
to provide a stable distribution of biomass. If however the level of diffusivity is reduced, then only
oscillatory, or even chaotic patterns, can appear (see Fig.14b and 14c). As noted by Huisman
et al. these oscillations are caused by the difference in thetime scales of the rapid transport of
phytoplankton, consuming the nutrients, and the slow upward transport of nutrients. Furthermore,
as shown in Section 3.3., for the survival of a population in an advective flux the diffusivity should
exceed a minimal level (3.30), which increases with the reduction of the habitat and of the growth
rate. In the absence of biomass the nutrient can be nearly uniformly distributed over the water
column, thereby the growth rate becomes only light limited and the production layer extends from
the surface to the compensation depth, which is usually sufficiently large. Thus, without biomass,
the level of mixing might be sufficient to induce population growth. However, the consumption
of nutrients and self-shading of light reduce both the growth rate and the width of the production
layer. That, in turn, increases the value of the minimal diffusivity (3.30) and finally the sinking
may lead to the population wash-out if the diffusivity in thewater column becomes insufficient.

Koszalka et al. [50] noted that the periodic oscillations ofphytoplankton biomass will be most
probably disguised by currents and horizontal inhomogeneity in a real ecosystem.

Upper mixed layer Hodges and Rudnik [30] and Beckmann and Hense [3] showed thatif self-
shading of light can be neglected in equation (4.8), then an upper mixed layer does not lead to any
qualitative changes in the system dynamics. However, Yoshiyama and Nakajima [118] pointed out
that a UML can lead to bistability of phytoplankton profiles.

Ryabov et al. [89] generalised this result by taking into account the competition of two species
and relaxing other assumptions. They considered the model (4.13), assuming a gradual change
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Figure 14: (Colour on line) Evolution of the phytoplankton density and the nutrient concentration
with time. (a) A stable DCM (D = 0.5 cm2/s), (b) small oscillations in the DCM (D = 0.2 cm2/s),
and (c) large-amplitude oscillations in the DCM, with double periodicity (D = 0.12 cm2/s). The
figures are reprinted from Nature,439, Huisman et al., pp. 322-325 [36], Fig. 2, with permission
of the author.

of diffusivity (4.6) from a UML to the deep layers, and showedthat under certain parameters,
depending on the initial conditions the production layer can be steadily located either within a
UML or below it. Fig. 15 provides a rough insight into the system dynamics. In the absence of
an upper mixed layer the difference in the locations of biomass and of the production layer drives
the bulk of biomass towards the production layer (Fig. 15A).The shift of biomass can lead to the
redistribution of resources, which in turn can change the location of the production layer. This
process repeats until the system reaches an equilibrium configuration (Fig. 15B), when the centre
of biomass coincides with the centre of production. Now consider a system with an UML. In a
certain range of parameter the UML does not affect distributions with a deep maximum of biomass
(Fig. 15C). However, the initial growth of biomass within the UML begets another stable solution
with a maximum of biomass located within the UML. The biomassis almost uniformly distributed
within the UML and its location is uncoupled from the location of the production layer (Fig. 15D).
As a result, a gradual shift of the bulk of biomass into deep layers is no longer possible and the
transition to a deep biomass maximum can only take place if the light intensity below the UML
is sufficiently large to provide positive net growth in deep layers – otherwise the phytoplankton
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Figure 15: Typical vertical phytoplankton profilesP (z) in a system without a UML (top) and with
a UML (bottom), assuming a gradual change of diffusivity (4.6) in model (4.13). Without a UML,
a non-stable phytoplankton distribution (A) evolves to a single stable solution (B). Under the same
conditions in the system with a UML, we observe two stable distributions: with a maximum in the
deep layers (C) and with a maximum in the UML (D). The dot-dashed and dashed lines show the
limitations of growth (4.4) by light and by nutrient, respectively, vertical dotted line shows the level
of mortality. Black and grey arrows show the centers of biomass and net production, respectively.

remains trapped in the UML. Thus the production layer can occupy different parts of the water
column, depending on the current system state and on initialconditions.

5. Discussion

Concluding this review we would like to make a few notes. First, let us compare the behaviour of
the critical patch models and those based on the consumer-resource dynamics. The latter models
can be divided into two large groups. In the first group we would include those systems in which
the location of a favourable patch is constrained by some environmental conditions. For instance,
the limitation of phytoplankton growth by light leads to theformation of the favourable patch in
the upper level of a water column. The dynamics of this group and of the critical patch models
demonstrate many general traits and many effects can by predicted and evaluated on the basis of the
minimal models. The second group consists of the models in which the location of the favourable
patch is determined by the dynamical interplay of differentfactors. For example, we can consider
the growth of phytoplankton biomass driven by two opposing resource gradients. In this group,
the location of the favourable patch is not predefined. Moreover, the system dynamics becomes
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very sensitive to the implementation of the consumer-resource cycling. This complexity leads to
the arising of new patterns and new dynamical behaviour, which can hardly be reproduced in the
framework of the critical patch models.

The second remark concerns the advantages and disadvantages of partial differential equations
(PDEs) for modelling ecological systems. PDEs provide veryconvenient and powerful tools for the
investigation of population dynamics. First, in the same framework, we can consider such different
and complex phenomena as, for instance, the vertical distribution of sinking phytoplankton cells or
the survival of a population drifting in a flow. Second, analytical solutions in many cases provide
important predictions and understanding of the main effects, which can appear in more realistic
systems. Third, one can perform an exhaustive numerical simulation of a model, determining all
possible bifurcation points. Finally, seemingly the pool of methods developed for the analysis of
partial differential equations is not played out yet and this approach can still gain a lot of useful
techniques from quantum mechanics and statistical physics. However, we would like to mention
as well some restrictions of this approach. Intrinsically it is always suggested that this approach is
suitable for systems containing many organisms, so that therelative fluctuations of density become
negligible and all function are continuous. However this statement does not hold if we consider the
survival-extinction transition. As the system approachesits critical state, the population density
declines and the fluctuations of density (demographic stochasticity) start to play a crucial role
[105]. Thus, in reality, the extinction of a population might occur under conditions which still
allow for the population survival in a deterministic PDE framework. Therefore, the development
of a theory including stochastic effects is necessary for the correct representation of the transient
behaviour.
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