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Abstract. The spatio-temporal dynamics of a population present orieeofnost fascinating as-
pects and challenges for ecological modelling. In thichative review some simple mathematical
models, based on one dimensional reaction-diffusion-eaweequations, for the growth of a pop-
ulation on a heterogeneous habitat. Considering a numbraodgls of increasing complexity we
investigate the often contrary roles of advection and diin for the persistence of the population.
When it is possible we demonstrate basic mathematical iggbg and give the critical conditions
providing the survival of a population in simple systems anchore complex resource-consumer
models which describe the dynamics of phytoplankton in @&mnatlumn.

Key words: diffusion, advection, survival, population, phytoplamixt
AMS subiject classification: 35K57, 76R10, 76R50, 92D25, 92D40

1. Introduction

For long times field biologists and naturalists have beeniriased by the richness and beauty
of complex patterns that can be observed in spatially exmpdbpulations. However, the same
observations also constitute a challenge for theoresci@mo aim to explain this complexity by
means of mathematical models. At first glance one might beptiedinto argue that the spatial
diversity of natural populations mainly originates frommsmunderlying abiotic heterogeneity of
the environment. If growth conditions vary between différcations then this spatial variation
should be reflected in the density distribution of naturgbyations. Thus, it is reasonable to
assume that a large part of the observed richness in thermpageof biotic landscape can be
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attributed to the spatial heterogeneity of growth cond#idOn the other hand in nearly all systems
populations at different locations are coupled and are @biateract with each other, be it by
random, diffusive mixing or by directed, advective flows arrents, which are able to transport
individual organisms from one region to another. Note thatterm “advection” here is used in a
very general sense, including different mechanisms ofpart, such as drift caused by a current
of water, sinking and floating-up in the gravity field, chemas, etc.

The impact of such spatial interactions on the fate of a lpogiulation can be very diverse,
depending on whether the flow brings-in new immigrants ihehabitat or if it takes them away.
Furthermore, diffusion and advection can have opposingenfies, where, for example, one pro-
cess may be beneficial for the population, while anotherggetas adverse effects. Usually, the
role of an advective flux is evident and mainly depends ontiength and direction. In contrast,
the role of diffusivity can be of two kinds. On the one handfudiivity accelerates the spread of
a population in a habitat and is necessary to provide thelptipo’s persistence in a flux. On the
other hand, intensive mixing may transport too many orgasisito unfavourable zones, result-
ing in the extinction of the population. Moreover, in con®rmesource models usually also the
resource fluxes are driven by diffusivity and advection, @ fa@hich leads to even new patterns
and dynamical behaviour. As a consequence, it is quite Iplessi find stable populations in loca-
tions where growth conditions alone would not permit péesise. On the other hand, seemingly
well-being habitats may not be able to sustain a stable ptipal if they suffer population out-
flows. From all these effects, populations are spatiallycttired in an intricate interplay between
local growth and its geographical variations on the one laanttispatial transport by diffusion and
advection on the other hand.

This article is devoted to present an introductory revievinefse topics and to introduce the
reader some of the most commonly used models for the popualdiinamics in a non-uniform
turbulent environment. Even though we have in particulargpecific case of phytoplankton dy-
namics in mind, the main concepts considered here hold fpipapulation subjected to mixing
and advection. When it is possible, to reproduce the whaip we perform derivations of the
main mathematical relations. Otherwise we aim at least toahestrate some basic ideas and refer
to detailed discussions, providing information about tre@nmechniques that are useful in this
field of research. There exist many excellent reviews abpatia population dynamics (see e.g.
[32, 47, 65, 72]). Nevertheless to our knowledge, the inégrpf advection and diffusion for a
heterogeneous population, as elaborated in this text, évesr bheen described. So, while the text
will not provide much new insights for the specialist, we adpat many readers will find this text
a valuable introduction into the basic mechanism and atitonditions providing the survival of
a population in a heterogeneous environment.

To focus on the main ideas, we had to confine the review to som@tated with population
survival. However, we would like to briefly mention other iorpant aspects of spatial population
dynamics that had to be omitted here. First, we had to réstrgingle species populations, while
one of the most important and still debatable challengesems the competition of spatially
structured populations [104, 25, 98] and the high diversitghytoplankton species (see e.g. [88]
and the references therein). Second, for the sake of siitypie included only Fickian diffusion
models, whereas in the ocean diffusivity depends on the sfgghenomena [72]. Third, we had
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to omit the interesting aspects concerning conditionadipggnce in situations where the growth
is influenced by an Allee effect [100]. Fourth, the interantof turbulent currents with other pro-
cesses can produce complex spatial structures in phytdpladistributions [57], whereas locally
oscillatory behaviour may lead to spatio-temporal chastizes [79, 80]. Finally, we did not even
touch such important problems as model validation and thelsition of multicomponent natural
ecosystems [60].

The review is structured as follows. In chapter two, we dia@liscuss some non-spatial mod-
els, which will be used later to build-up spatial explicit deds. In chapter three we consider
critical patch models, starting from the well known KiSS mbdand proceed with more sophis-
ticate models, which draw out the influence of boundary domu, finiteness of the favourable
patch, heterogeneity of the mixing, etc. Furthermore, wesiter the Fisher-Kolmogorov equation
and its extensions to advection, non-uniform mixing anetegeneous environments. In the last
chapter, we consider 1D models of the vertical phytoplamkiistribution, starting from those that
include only light limitation and then considering modeisluding many limiting factors. How-
ever, even in the latter models we focus on the basic theatetspects and general conclusions.

2. Non-spatial models

Logistic growth  As a warming-up, in this chapter we shortly describe somekamopulation
models in a non-spatial context. These models will mainlyided as a base for developing spa-
tially extended models, but they may also serve as a benéHoraexploring the properties of their
spatial analogues. Lét(t) denote the density of a population of interest at timkn the simplest
way, the dynamics of can be modelled in terms of an ordinary differential equatbfirst order

dpr

dt
where the growth ratg(P) depends on the population density The functionu(P) takes into
account for density dependent regulatory factors whiclallsare associated with resource deple-
tion or conditions of over-crowding. Consequently, (negteg the possibility of an Allee effect)

we may assume that P) is monotonically decreasing and eventually becomes negfati large
densities. The simplest form to put this into a model is tlggdtic growth

dpP P
e (1-1). (2.2)

whereK is the carrying capacity of the system and describes themaiopulation density that
can be sustained by the system, i/§.K) = 0. Equation (2.2) can be thought to arise from a
Taylor expansion of equation (2.1) for small densittes< K, wherepy = p(0) is the growth rate
at small density and™ = —, (9p./0P) " is the carrying capacity.

= n(P)P (2.1)

Resource-limited growth As a secondary model class, we investigate resource limpiedl|a-
tion growth, where the dynamics of the resource is expi¢ritluded into the model equations.
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Figure 1: Typical phase trajectories of the non-spatial@emdA) the dynamics of the conservative
model (2.3) is reduced to a straight line; (B) the non-covetére model (2.7) leads to the extinction
of the population; (C) the trajectory of system (2.10) dgiia phase space to an isolated fixed
point. The initial values P(0) = 0.1, N(0O) = 1.5 are marked Hgdicircles, other parameters are
c=5 Hy=5m=1,6 =0.005¢=0.5andN; = 15.

Possibly the most simple way to model an isolated consugsatrce system (i.e., in the absence
of any fluxes out of the system) is given in the following form

dP
KL N)P — mP

(2.3)
dN

HereN(t) denotes the resource concentration (e.g., a limitingenttsuch as nitrate or phosphate)
at timet and the population abundané¥t) is measured in units of the organism’s resource con-
tent. As usual, in contrast to equation (2.1), here we eitiyliseparated the growth into a term
proportional to the resource uptake V) P, and a death process with mortality Note that in this
review the symbol: has a somewhat different interpretation in the context asmurce-implicit
(2.1) or resource-explicit model (2.3). We hope that theleeds not confused by this notation.

Usually, u(N) is assumed to vanish for small resource concentratip(®¥ (= 0) and to be
saturated for largé/. A convenient parametrisation is given by the Monod form

N

N = ey (2.4)
with the half-saturation constant,,.

Equation (2.3) represents a closed system, where recyisliagsumed to be 100% efficient.
Thus the biomass that is taken out of the system due to deatlegses is remineralised into the
nutrient pool, i.e. no material is lost in the conversiomiroonsumer to nutrients. As a conse-
guence, this system can be reduced to a one-dimensional,ndedeite the fact that it contains
two equations. The reason is that the total resource camatemt, either free or bound to the pop-

ulation, is a first integral of motionS = N + P = const. After plugging this into the equation for
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P we obtain a single equation of the form (2.1) for the time dyits of the population density,

dP
— = Plu(S—P)—m]. (2:5)

If the saturation of the uptake rate is neglectedy) = ¢V, we retrieve the logistic growth model
(2.2) with

o =cS —m and K:S—%. (2.6)

The phase trajectory of system (2.3)(iR, N) coordinate is a straight line from the initial condi-
tions to an equilibrium state (Fig. 1A).

We note though, that the reduction to a single equation worlkg for a closed system. In
general, recycling efficiency will never be fully effectivelThus, one may assume that only a
fractione of the dead biomass is remineralised, leading to a non-caaitsee model

P
@ P —mp,

dt (2.7)
dN

The two approaches introduced in this section will be usedhapter 4 as building blocks to
model the local reaction of a spatial extended populatiomweVer we should note that both
(2.3) and (2.7) have some shortcomings, which ultimatedyratated to the fact that the models
do not contain in- and out-flows. For example, the model (8d@s not even admit isolated
stationary states in th@V, P)-phase plane and for any initial condition leads to the exitom of
the populationP(t) — 0 (Fig. 1B). While this is no problem in the spatial extendedmerparts
of the models, which necessarily have exchanges with sodiags specified by the boundary
conditions, in local models these exchanges should beduted as additional terms.

Chemostat models To show that these problem disappear as soon as externa fuxacorpo-
rated into the models, we shortly introduce the most simptefeequently used chemostat model.
Consider a well-stirred reactor that contains phytoplanktells with concentratio®(¢) and a
limiting nutrient with concentratiodV (¢). The chemostat is supplied with the nutrient at an input
concentrationV; from an external nutritive medium. The outflow contains bo#dium and phy-
toplankton cells. Inflow and outflow are characterised bydihgion rateé. Then the chemostat
equations take the following form

T
(2.8)

% = §(N; = N)— u(N)P +emP .

In this model, the total amount of free and bound nutri¢hts N + P is not conserved. Thus, the
chemostat sustains a stable feasible equilibrium and gtemsyspirals in phase space to an isolated
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fixed point (Fig. 1C), see e.g., [38, 10, 39]. Furthermorepkrfect nutrient recyclings(= 1) one
can easily show thai(¢) follows the simple dynamics

ds

— =40(N; = 5). 2.9

= 0N = S) (2.9)
Therefore, after some transient time, determined by theamxge raté, the system settles to a state
whereS = N;. This means that the total amount of nutrients in the sységimer bound to the pop-
ulation or free, asymptotically goes to the external natr@mncentration, and one asymptotically
retains a one-dimensional equation, similar to (2.5)

% = P[u(N; — P) — (m +9)] . (2.10)

3. Critical patch models for an extended population

In this section we review some simple one-dimensional sgathporal models which demonstrate
the intricate interplay between mixing, advection, bougdanditions and other factors which are
critical for the persistence of a population. Consider aypajpon growing on a one-dimensional
(1D) axis, which may represent either a horizontal or valtipatial extension. Le&?(z, t) denote

the population density at timeand positionz. We assume that the change of density occurs as a
result of the local death-birth processes and of the spatakement of organisms due to diffusion
and advection. The dynamics of such a population can beawriiitt terms of a reaction-diffusion-
advection equation [72, 62]

8P((?‘:j’ t = reproduction- advectior4- mixing
or 0 0P
= u(z,P)P — Vo + 2" o7 (3.1)

wherep represents the growth rate (compare to equation (2:13)the advection velocity ant

is the diffusivity, which can depend onand other variables. The advective teml%g describes
the drift of the population with the constant velocity There are many physical or biological
factors which can give rise to advective processes. Faamgst in a vertical system the organisms
(e.g. phytoplankton cells) may sink (or rise) because theynaore heavy (or light) than their
surrounding medium. Another example arises for a populati@a vertical/horizontal stream (e.g.,
in a horizontal flow of a river or in an ocean current). Adventand diffusion can be written in
terms of a derivativ%% J(P, z) so that the whole flux of biomass is given as

J—wp - (3.2)
ox

Additionally, model (3.1) has to be complemented by appedprboundary conditions which
specify the environmental influence on the spatially ex¢éelsl/stem. One can distinguish between
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three important types of boundary conditions. The first tygreDirichlet) boundary condition
merely specifies the value of the solution at the boundanyekample, the condition

P(0)=0, P(L)=0 (3.3)

assumes that the population density vanishes at the haldats, which corresponds to an abso-
lutely hostile environment outside the segmgnt’.]. The second type (or Neumann) boundary
condition specifies the flux across the boundary. For instathe condition

J(x)|x:O,L = (UP— D8—P)
ox

specifies impenetrable boundaries, in other words there isand outflow of biomass across
the habitat edges. The boundary condition of the third (Rpbjipe is a linear combination of
the Dirichlet and Neumann conditions. Consider, for instaa penetrable barrier, where the flux
of organisms across the barrier is proportional to the diffee of the population density outside,
P,.;, and inside P(z), yielding

oP
J@)mas = (0P~ DG

If the permeability of the barrieh = 0 this condition is equivalent to the zero flux boundary
condition, and aé — oo it approaches the Dirichlet boundary conditidh&l) = P,,;.

=0 (3.4)

z=0,L

= h(P(z) = Pout)|y—o.1, - (3.5)

z=0,L

3.1. Persistence on a finite patch: critical patch size and ming

For simplicity, we begin our investigation with models whignplement only diffusion but no
advection. We concentrate on the population dynamics orita favourable patch and show that
in this case diffusion plays a negative role for the popalai persistence.

In the absence of advection= 0, equation (3.1) reduces to

2
apgf’ D _ e P)P+ D%j (3.6)

complemented by appropriate boundary conditions. Pertegomsost important biological ques-
tion that one may ask in this model concerns the conditiom®euwhich the population will be
able to persist or die out. This question can be triviallyvegr®d for an infinite homogeneous
environment, where the growth rate is independent of théamaordinateu(z, P) = p(P). In
this case (and assuming that there is no multistability, the equation:(P) = 0 has a unique
positive solutionP*) the fate of the population entirely depends on the sign elitiearisation of
the growth rate aroun® = 0. The population can invade if and only if the linearised giovate
o = (P = 0) > 0. Furthermore, it is easy to verify that the final distributimust be uniform,
P(z) = P~

In reality the growth conditions will differ between vari®ipcations so that(z, P) will de-
pend onz. We refer to such a situation as a “heterogeneous envirotimem heterogeneous sys-
tem, obviously also the linearised growth rate will be a fiorcof the spatial positionyy = (),
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which makes the problem of the population persistence nargticated. Even if locally the pop-
ulation faces bad environmental conditiopg(x) < 0, due to the population inflow from other
locations it may still be able to persist. On the other harfdyaurable patch withu,(x) > 0is no
longer save, because diffusion out off the patch can caudié@uhl losses which may even lead
to local extinction.

KiSS model One simple and elegant model to study this problem has bempéandently in-
troduced by Kierstead and Slobodkin [44] and Skellam [96he Tnhain idea is to separate the
landscape into a favourable area (which will be denoted espiecies’ habitat) adjoining some
hostile environment from both sides. For its simplicity,ilskOkubo assigned to the model the
name KiSS, which on the one hand includes the authors’ isjtéand from the other hand can be
deciphered as “Keep it Simple Stupid” [97]. The KiSS modejgests a population growing on
a finite patch of sizd,, surrounded by an absolutely hostile environment with it€imortality
(Fig. 2). Thus, per definition the population density outsad the favourable patch equals zero,
and it is sufficient to consider the dynamics inside the sege. « < L, upon the condition that
the solution vanishes at the boundaries. To simplify theasibn even further, the growth term in
equation (3.6) is linearised for small density and is sestamt.., within the habitat, which yields
the following equations

oP 0*P

- = —_— <zx< .

T ,LLOP+Dax2, 0<z<L (3.7)
PO) = P(L)=0. (3.8)

This model could represent, for instance, the vegetatittieipe of coastal plants growing on some
island in the ocean, where diffusion of plants takes plaeeséed dispersal. Seeds which are
transported out of the island into the water cannot survidech is equivalent to infinite mortality
outside of the favourable patch.

A detailed analysis of the KiSS model can be found in [96, 424, Here we just present one
simple solution. Using the method of separation of variglle assume the existence of a solution
of the form

P(x,t) = X(x)T(t) . (3.9)

Substituting this expression into (3.7) we obtain the ergare problem
T (t) = NTu(t)
DX}(2) + (o — M) Xu(z) = 0 (3.10)

where the eigenfunction’,,(x) should satisfy the boundary conditions (3.8), i.&,(0) =
X,(L) = 0. The solution to the last equation of system (3.10) is wethn

1o — An -\
X, (z) = A, sin 'uOD x + B, cos 'uOD T .
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Figure 2: Influence of diffusion on the persistence of anatau population in the KiSS model
(3.7). (A) D = 3.2 < D, the population growth is unbounded; (B)= 3.3 > Dy, the population
goes extinct. Parameters arg= 2, L = 4, K = 400, thusD, = 3.24. The horizontal thick black
line shows the location of the favourable patch.

It satisfies the boundary conditions onlyAf, = 0 and the argument of the sine is divisible by
whenz = L. From the last condition we obtain the eigenvalues

m2n?D
Lz’
Solving the first equation of system (3.10), we find thatt) = Ce*!. The problem is linear,
therefore using the superposition principle, we can wtite, ¢) as the sum

P(z,t) = iA" sin (ﬂLx) et
n=1

where the coefficientd,, depend on the initial conditions.

Thus, with the separation ansatz (3.9), we were able to prése dynamics of the full model
as a sum of simple “modes”. The dynamics of mades determined by its eigenvalue,. A
mode grows if\,, > 0, decays if\,, < 0, and can also oscillate if the imaginary partgfis not
vanishing. Moreover, as— oo the full solution approaches to the mode that correspontiseto
largest (principal) eigenvalu*, because this mode has the fastest time expohiént ~ ™.
From (3.11) we find that the largest eigenvalie= \;. Therefore,

An = o — n=12... (3.11)

P(x,t)5= A sin (%) et

The population grows, and so is able to persish,;ifs positive. By contrast, foh; < 0 the
population dies out exponentially on the whole habitat. Sising expression (3.11) fer= 1, we
obtain the fundamental relation between the diffusivitg growth rate and the critical (minimal)
size of the favourable patch, which provides the survivdahefpopulation

LzLozmlg. (3.12)
o
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Okubo [71, 72] demonstrated that this equation can be dadddry means of simple dimen-
sional analysis. Suppose thB§ = f(D, o). Dimensionally,[D] = m?/s, [uo) = 1/s, and
[L] = m. Thereby, the simplest combination of parameters yields

| D
LQZC -,
Ho

wherec is a non-dimensional constant which equals the 1D model. The same expression holds
in 2D systems [96, 44], and it can be shown [32, 9] that the teoris depends on the principal
eigenvalue, thereby it represents the geometry of the model

Equation (3.12) can also be written in the form

L2
D < Dy=—2 (3.13)
T

yielding the critical, maximum mixind), under which the population can survive. Fig. 2A and
Fig. 2B demonstrate the population dynamics for differaffusivities. The population density
grows exponentially, if the diffusivity is smaller thdn, (Fig. 2A) and decays exponentially oth-
erwise (Fig. 2B).

These results highlight the negative aspects of diffusiat a population and reveal an impor-
tant ecological insight, namely that of a critical patchesia finite population under the influence
of random mixing must be larger than a minimal extensigrin order to sustain a stable popu-
lation. This critical sizel, simply scales as the square root of the strength of mixingldd/by
the growth rate, (3.12). Despite the model’s simplicity thedamental results (3.12) and (3.13)
have an important ecological message that prevails in nealestic settings. If a favourable patch
adjoins unfavourable areas, then the higher the diffysitlie higher will be the loss rate across
the boundaries, thus the larger should be the internal arédhee growth rate on the habitat to
compensate for these losses. Moreover, one large patclités b the persistence of a species
than two smaller patches of the same total size, since tvatpatvould have four ends, that would
double the loss rate. Diamond and May [15], McMurtrie [58n@ell and Cosner [8] applied this
concept of a critical patch size to the design of nationakgand natural reserves of optimal size
and form.

Logistic growth  As the growth of biomass in the KiSS model is not limited, oa&unal exten-
sion of the KiSS model is to consider a logistic growth fuanti

2
= uoP <1 - g) + D%, for 0<ax<L (3.14)
and the same (hostile) boundary conditions (3.8). For tladehonly approximate solutions are
available (see e.g. [52], [2], [61], [72]). The stationaniugion can be expressed in terms of
elliptic functions and was investigated by Skellam [96]y&aedowsky and White [54], and Ludwig

et al. [56]. However, applying the invasibility criteriagvean conclude that this system possesses
the same critical values as the KiSS model. Indeed, as thelgtogn density approaches zero,
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P(x, t)

Figure 3: Dynamics of the population with logistic growthg.E3.14), under different values of
diffusion. (A) Conditions are nearly critical) = 3.2 < D,. (B) Conditions are sufficiently far
from the survival-extinction transitio = 0.1 < D,. Other parameters ayg = 2, L = 4,
K = 400, thusD, = 3.24. The horizontal thick black line shows the location of thediarable
patch.

equation (3.14) goes over to equation (3.7). This meansfthgtopulation can invade in the KiSS
model, it will also invade in the model with logistic growtimd vice versa.

Figs. 3 show examples of the population dynamics. In bothrdgjuthe resulting population
density has a characteristic shape, with large densitigeeigentral part of the patch and a decay
of population numbers, the closer one comes to the hostildelnoNote, that if the conditions are
close to the critical values (3.12) or (3.13), the growthiohitass becomes limited by the diffusive
transport, and the maximum of density reached by the pdpualaan be much smaller than the
carrying capacity. This is illustrated in Fig. 3A whetexx(P(z)) ~ 6 even thoughk' = 400.
However, if the conditions are sufficiently far from the at region, the carrying capacity is
almost reached in the middle of the patch (Fig. 3B).

To obtain an intuitive understanding into the influence & density dependence in equation
(3.14) consider a KiSS model with an effective growth ratg.ot= (;0(1 — P(x)/K)),, which
equals the average growth rate of the logistically growiogyation. The new effect now is that
the effective growth rat@* decays with an increase of the population density). Therefore,
also the maximal diffusivityDj, admitting a survival of the population (3.13), will be a dging
function of P(x). This means, however, that the biomass can grow only uetittitical diffusivity
is reachedDj(P) = D. Thereby, if initially (whenP is negligible) D is close to the critical
diffusivity of the KiSS model, a small increase of densityersough to decrease; and to reach
the balance between production and loss.

Finite mortality and other extensions A second unrealistic feature of the KiSS model is the
assumption of infinite mortality outside of the favourab&bhat. This assumption does not hold
in many important cases and limits the applicability of th&& model. For example, it hardly
could be applied for phytoplankton simulations. Ludwig kt[&6] investigated an extension of
the KiSS model, where this assumption of an absolutely leostivironment was relaxed. In this
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study the authors assumed a positive growth ggtmside and a finite mortalityn outside of the

habitat
fo, for0 <z <L

() = (3.15)
—m, forz<Ooraz>1L.

As the mortality is finite, the organisms can survive outsifithe habitat and diffuse back.
This effect reduces the losses at the edges and the poputatiosurvive on a smaller favourable
patch compared to the KiSS model. In the model (3.15) the latipa can persist if

L22HBzaul"c’czaur11/E : (3.16)
Ho Ho

As the mortality approaches infinity this value approachescritical patch sizd,, of the KiSS
model.

Many other examples of critical patch models can be founténtooks by Okubo and Levin
[72] and Murray [62]. We just briefly mention some extensio@kubo [68, 70] considered a
model for growth and diffusion under an attractive force doavthe centre of a patch. He found
that the modified critical size equals. = Lof (v?/4aD), where f(0) = 1 and the function
f(v?/4a.D) monotonically decreases withtoward zero. Gurney and Nisbet [27] considered a
model in which the growth rate parabolically depends on th&dce from the habitat centre. This
approach is more realistic since it includes a gradual tiansfrom favourable to unfavourable
areas. Wroblewski et al. [116], Wroblewski and O’Brien [1&Ad Platt and Denman [81] included
the effect of grazing and obtained an expression similaBtd2?) for the critical patch size, in
which, howevery, is replaced by, — g, whereg characterises the grazing rate.

Influence of boundary conditions and spatial arrangement It is interesting to extend the anal-
ysis for more complicated spatial geometries. Seno [93]Gaatrell and Cosner [7] investigated
the influence of a spatial sequence of favourable and unfatateihabitats and boundary condi-
tions. Seno considered a population of organisms migraktgyeem patches of different quality.
Cantrell and Cosner [7] used a mean field representationsoptbblem. They compared the total
size of a population living on a finite habitat of siZe surrounded by either completely hostile
environments or by impenetrable boundaries. Using thestmgmodel (3.14), they assumed that
the habitat possesses patches of different quality, thiteggrowth rate changes between positive
or negative valuesy(z) = +1, provided that the favourable and unfavourable patches e
same total area (Fig. 4).

In this model the best spatial configuration of favourabld anfavourable patches depends
on the boundary conditions. If the exterior region is cortgllehostile then the location of a
favourable patch in the middle of the habitat (Fig. 4A) pd®s the best conditions for the popula-
tion, as two buffer zones separate the favourable region fhe completely hostile regions, which
decreases the population losses. Therefore, the totaHs®mill be higher than that on the habitat
shown in Fig. 4B, which in turn is more preferable than theitaalshown in Fig. 4C, where two
favourable patches adjoin the hostile surroundings.
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Most favorable Intermediate Less favorable

Most favorable

Figure 4: Comparison of several spatial arrangements olfable (.(x) = 1) and unfavourable
patchesf(x) = —1), assuming either lethal boundaries (top) or impenetriadladaries (bottom)
at the borders of the habitat (= 0 andz = 1) according to [7]. Plotted is the final population
densityP(x) in model (3.6) assuming logistic growth(z, P) = p(z)(1 — P/4) (solid line). The
patch quality,u(z), is shown as dashed line. Each case is classified either ast favxourable”,
“intermediate” or “less favourable”, reflecting the totahaunt of biomass.

If however, the boundaries act as a barrier, the maximum &sss achieved if a favourable
patch directly adjoins one of the impenetrable boundafé&s. @D). Even though the derivation
of this result requires rather sophisticated calculatigns evident that in this configuration there
is a single favourable patch which has only one border witlhufiavourable environment, and
so all possible losses are minimised. By contrast, anytisygibf the favourable patch leads to a
worsening of the habitat quality (Fig. 4E and 4F).

It is clear, that the choice of the best arrangement of hiaguality is very important for the
design of national parks, natural reserves, etc. Furthersame mechanism also captures some
aspects of relevance for the vertical distribution and cetitipn of phytoplankton species. In a
water column the surface acts as an impenetrable barriers, Tih an incompletely mixed water
column, a more light limited or buoyant species obtains apetitive advantage to another species,
whose favourable patch is located in subsurface layers8f34,

Arbitrary spatial dependence of the growth rate The behaviour of model (3.6) in the case
where the growth rate(z) is an arbitrary function of the coordinates was investiddtg Cantrell
and Cosner [9]. Applying separation of variables to thedimsed problem it is possible obtain a
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system of equations, similar to (3.10)

T(t) = MTu(t)

n

(3.17)
DX!(2) + pl@)Xo(2) = AXa(2).,

where X (x) should again satisfy certain boundary conditions. Now, d@w,;.(x) # const and a
solution to this equation is known only for some partial feraf the functiory(x). If the principal
eigenvalue of these equations is positive, the stationalgtien P(z) = 0 is not stable, implying
that the population can invade and establish on the haltitzdn be shown that this is always the
case if the average growth rate is positiyg(xz)dz > 0. However, this condition is not necessary
and does not hold even in the simple models considered beaneeral conditions of uniqueness
and the existence of positive eigenvalues were obtaineddss ldnd Kato [29], Senn and Hess
[92], Cantrell and Cosner [9].

The analysis of 2D and 3D models raises even more questiansigher dimensions the
persistence of a population may depend on the geometricdbthe favourable patches [15], the
form of the edges separating the patches and finally it magriipn the behaviour of individuals,
moving across or along the edges [19].

3.2. Persistence on an infinite habitat

Travelling fronts  While in the previous section we have highlighted some negaispects of
diffusion for the fate of a population, in this section we wttbat depending on the circumstances
diffusion may as well support population growth. Maybe thestrdrastic example is the possibil-
ity to generate the spread or geographic expansion of a atpulinto a new area. Consider, for
simplicity, an infinite homogeneous habitat which providgsositive growth rate,, everywhere.

If, as it is commonly assumed (i.e., there is no Allee effet® stationary stat® = 0 is unstable,
the appearance of organisms in one spot will lead to theiamsipn over the whole habitat. As-
suming logistic growth the spatio-temporal dynamics ofgbpulation can be represented by the
following equation

P 0*P

which is known as the Fisher-Kolmogorov equation after &igB0], who considered the logistic
dynamics of advantageous genes and Kolmogorov et al. [48),imvestigated a general form of
this problem (see also [62, 51, 108] ).

Fisher [20] and Kolmogorov et al. [48] have shown that ifiadly some part of the habitat is
not occupiedP(x) = 0, then the population will propagate into this part with tlh@stant velocity

v =2/ oD . (3.19)

This solution is illustrated in Fig. 5A which shows a popidatpropagating from left to right
through a 1D habitat. As will be shown below, the magnitudehef propagation velocity is a
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Figure 5: Front-propagation process in the Fisher-Kolmogonodel (3.18). (A) Propagation of
a travelling front, if initially P(z,0) = 0, forz > 0. (B) Propagation of a “pseudo-wave” in the
limit of zero diffusivity, if initially P(z,0) = 1/(z + 1)° for 2 > 0. In both plotsP(z,0) = 1 for

z < 0.

crucial factor not only for an invasion process but also fog survival of a population in the
presence of drift, sinking or other advective processes9®4101]. There is a variety of ways to
derive relation (3.19). The more common and rigorous agpreaiggests to assume a travelling
solution of the formP(x — vt) and then to prove that this solution is stable only # v, (see e.qg.
[51]). Below we will provide another heuristic derivatioordirming the validity of this expression.

Note that in large aquatic basins the horizontal turbuleiximg increases with the scale of
phenomena [73, 67, 66, 74]. Petrovskii [77, 78] showed thist $hould result in the increase
of the front propagation velocity. Moreover, this velocglgould grow with the size of the area
occupied by a population.

Pseudo waves We should stress a condition which is sometimes missed. €leeity v, is the
minimal possible propagation velocity, which is realisethe population invades into an empty
area or if, at least, in this areB(x,0) decays more rapidly than a Gaussian distribution (see
Fig. 5A). Another pattern of so-called “pseudo-waves” maguw for special initial conditions if
from the start a small amount of biomass is distributed olrenvthole space. This is illustrated
in Fig. 5B where the initial distribution of biomass is algaisally decaying forr > 0 and so is
visually indistinguishable from that in Fig. 5A. As showndlnitial configuration yields a much
faster wave-like spread of the population. Strictly pesitinitial conditions lead to simultaneous
logistic growth toward the carrying capacity at every positand, even in the limit of zero dif-
fusivity, a wave-like pattern arises because the capasitgached at slightly different times in
different points and not due to the transport of biomass fiysion.

Pseudo-waves appear if the time scale of diffusive transperis slower than the time differ-
encery.,, of demographic processes in the neighbouring points

Az? Ax 0P
™ ~ —= < Tdem

2D T u(P)P oz (3.20)

wherer,.,,, can be found expanding the equatiB(z,t) = P(z + Ax,t + T4.,) iNto a series. It
is easy to check, that for a Gaussian distributiorP¢f, 0) both sides of (3.20) are proportional.
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Figure 6: Schematic presentation illustrating the spréadompulation into an oppositely directed
flow of velocity v. Initially the 1D habitat is populated on the left, while thght is not occupied
by the species. In a system without advection the populatiaund propagate into the right with
the front velocityv,, given by equation (3.19). This spread is hindered by theettxe flow, which

is aimed into the opposite direction. As a result the poparairont propagates with the reduced
velocity v, = vy — v. The population can persist only:if > v, otherwise it is washed out.

In contrast, for algebraic or exponential distributionf{fAx, 0) the right hand side will be larger
if Az exceeds a threshold value. Consequently, the diffusivesp@rt will be always slower than
the time scale,.,, of the demographic process, giving rise to a “pseudo-wave”.

Advection Consider now an extension of the Fisher-Kolmogorov equdtioa population which
is additionally subjected to an advective flow with constagiocity v [63, 64, 14, 99, 101, 4, 50]

2
oPwt) _ p(y_LY_ 20, p2l (3.21)
Bz | o2

To investigate the role of advection let us again suppog&lirdonditions, such that only the
left part of the habitat is populated, while the remainingt g@not occupied by the species (see
Fig. 6). In the absence of advection in this system, the @djoul would propagate into the right
with the velocityv;. Now assume that this spread occurs in an advective flow,hwiBigoing
into the opposite direction with the velocity This can be analysed best by considering a frame
of reference moving parallel to the flow with the same velpcitso that in this frame the flow
velocity is zero. In the moving reference frame the popatatlynamics obey equation (3.18)
and the front propagates with the velocity given by (3.19). Therefore, in the fixed reference
frame, the propagation velocity is reduced by the velociof the advective flow, so that the front
propagates with the velocity, = vy — v.

Obviously, the sign of the reduced propagation velocityedaines the persistence of the
species. A negative propagation velocity leads to a pojmatash-out, whereas a positive prop-
agation velocity results in the invasion of the empty hdbifghus, on an infinite habitat in an
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advective flow the population can survive only if

v <y =2ypoD, (3.22)

or, written in a different form ,
D> Dy = — , (3.23)

441

which means that in a flow a population can persist only if thkislvity exceeds the threshold
valueD,,;,. Equations (3.22) and (3.23) relate the critical valuesfidisivity D and flow velocity

v and illustrate the constructive interplay that can arigdépresence of both processes, advection
and diffusion. The region in thév, D)-coordinate plane, where a population can outgrow an
advective flow, is visualized in Fig. 7 (area under the satid). Note that if the habitat is unlimited
then for any flow velocity there is a diffusivity which provides the survival of the pibgtion. This
transition plays an important role in many ecological ditwas and constitutes, for example, a
necessary condition for the persistence of a populationrivea[99], as well as for the persistence
of sinking phytoplankton species in a vertical water colygify 95, 33].

Derivation of the front propagation velocity These results about the spread of a population in
an advective flow can be elegantly used to derive the populatpread, Eq. (3.19), in a system
without advection. For these aims we consider the generdeimo
2
oP@.t) _yp -2 L poL (3.24)
ot x

Here, the local growth term has been linearised for smalsities, however we allow for an ar-
bitrary spatial dependence of the growth rates= n(x). This model can be simplified with the

following transformation
P(z,t) = exp (%) P(z,1). (3.25)
The aim of this ‘trick’ is to eliminate the advective term aasl a result we obtain the following

equation of a system without advection, however with a medifjrowth term

; o
8P(x’t>:<ux “)P+D8—P. (3.26)

ot ( >_E 02

Note that the transformation (3.25) should be applied asmy boundary conditions of the origi-
nal system and may alter them. However, if we can neglectifigence of boundaries (e.g. if the
habitat is infinite, but still heterogeneous) advectioraois a very simple ecological interpretation
as an additional mortality of strength/4D. This means that the presence of advection effectively
reduces the growth raje(z), and this effect increases &s— 0.

Now we can “derive” the velocity, of the front propagation in the Fisher-Kolmogorov equa-
tion. On a homogeneous infinite habitat.{) = 10) the population can survive only if the growth
rate is positive. Thus, using (3.26) the velocity should testrained

v < 24/ poD.

However, as we showed before, the maximal possible adveecétcity, v, is equal to the front
propagation velocityy ;, which finally leads us to formula (3.19).
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3.3. Finite habitats in an advective flow: the “drift paradox”

While the Fisher-Kolmogorov equation (3.18) assumes anitefhomogeneous habitat, such con-
ditions are a strong idealisation for most natural popafeti To describe some more realistic
situations, in the following we investigate the role of ackien for a population in a heterogeneous
environment which is additionally constrained by certanibdary conditions.

Separation of variables Consider again the general model (3.24) of the previousseathich
now is supposed to be complemented by some boundary camlitidgain we use the change
of variables (3.25) to eliminate the advection term. Thedinform of equation (3.26) allows
a separation of variableB(z,t) = X (z)T(t) and by comparison to Eq. (3.17) we obtain the
eigenvalue problem for the time-independent eigenfunstio

2

DX"(z) + p(x) X (x) = <)\” + Z—D> X(z), (3.27)

while the equation fof'(¢) remains unchanged. Her¥, denotes the eigenvalues for the problem
in the presence of advection. FurthermoYé;) should satisfy certain boundary conditions, which
depend on the boundary conditions obtained#¢x:, t). If we introduce\ = \* + v2/4D this
equation will take the form of the second equation of systérm?) for the problem without flux.
Thus we can conclude that the presence of advection for algtogruunder boundary conditions
simply reduces the eigenvalues [24, 64, 14]

1)2

A== — .
4D
With the same arguments as in Section 3.1., to provide th&igtence of a population, the
largest eigenvalua” must be positive. Therefore, a population is only able tsigein a flow if
the proper model without flow has the principal eigenvalue

O 3.28
> .

> = (3.28)
KiSS model with advection As a simplest example, consider the KiSS model (3.7) in tespr
ence of an advective flow. Recall, that this model describpspulation on a finite favourable
patch provided that the population density vanishes at thdbaries. These boundary conditions
(P(0,t) = P(L,t) = 0) are not changed by the coordinate transform (3.25), sciedunctions
P(z,t) and X (x) also must vanish at the boundaries. Therefore, we will aliteé same expres-
sion (3.11) for the eigenvalue spectrum with the dominagegmialue\* = uy — 72D/ L. Taking
into account (3.28), we can easily derive the conditionglierpersistence of a population on a

finite favourable patch in an advective flow

2D
v< v =2VDN = 2\/17 (MO - WL—Q) . (3.29)
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This expression describes a semi-circle in thev) parameter plane (see dashed line in Fig. 7).
Note that ag. approaches infinity oP approaches zero, the maximal velocity (3.29) goes over
to the condition (3.22). This means that in the limit of sndiffusivity (D < pL?/7?) the
conditions for survival on a finite patch are almost the samthase on a homogeneous infinite
habitat. Thus, for smalD the two critical curves in Fig. 7 almost coincide and showrailsir
behaviour. For larger diffusivity, however, these curve®je because a finite habitat provides a
slower propagation velocity (3.29) than an infinite hab(8&®22). Finally, for large values db the
increase of the losses across the habitat edges resulsupprer diffusivity limitD,,,., on a finite
habitat.

Solving this inequality forD, we obtain a limiting intervaD,,,;,,(v) < D < D,,4.(v), with

D 2,2
Dmin/ma:c = (1 Ty/1— 71-—1}2) . (330)

Here, D, is the critical (maximal) diffusivity (3.13) in the KiSS metl The intervalD, ..., Dynax]
specifies the limits of mixing intensity which prevent theppéation wash-out) > D,,;,), but
still enable the persistence of the population on a finitelp&b < D,,..). These values are real
only if

L
V< Upmae = 7'“ ) (3.31)

Note that the critical velocity,,.. is a threshold when the characteristic time scale of growth
7, = 1/p becomes slower than the time scale of advectioa L/v. If v > v,,,, the population
cannot persist, because on the one hand the large adveetjoines a strong mixing intensity to
provide the expansion of organisms upstream, but on the b#red such mixing increases the
transport of organisms into unfavourable areas and thelato becomes extinct.

Critical patch size In the following we investigate the influence of advectiontbe critical
patch size in the KiSS model (3.7) and in the model by Ludwiglet(3.15). In the first model
the population vanishes at the habitat edges, whereas settond the population density should
vanish whenr — +oco. Therefore, in both models the transformation (3.25) dassaiter the
boundary conditions and the presence of an advective flowlgiraduces the growth raje This

leads to the effective growth rate

’U2

Ho = Ho — 1D
in the KiSS model and to

1)2

MO—E, forO<z <L

p(x) =

2
—(m+Z—D) , fore <Oorax>1L,

in the model by Ludwig et al.
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Figure 7. Parameter regions which permit the persistenee pdpulation in an advective flow.
Persistence of the population is possible below the clitioaves in the( D, v)-parameter plane.
Two different scenarios are compared. The solid line shtvegersistence regime for an infinite
uniform habitat (cross and diagonal hatching). In this dagelimiting velocity scales as the
square root of diffusivityy ~ /D, equation (3.22). In comparison, the dashed line shows the
result for the persistence of a population on a finite favolerpatch with lethal boundaries (cross
hatching). Here, the persistence regime yields a senliedir¢the parameter plane, equation (3.30).
Assuming intermediate growth conditions, e.g. similarhe mmodel by Ludwig et al. (3.15), one
should expect the critical curve to be located somewheb®taeen the solid and the dashed line.

Substituting the modified growth rate’ into equation (3.26), we find similar expressions for
the critical patch size as in Egs. (3.12) and (3.16), wheshould be replaced ky". Thus, for the
KiSS model in an advective flow the critical patch size equals

D D 2D
7y L _ 7 (3.32)
0 o Ho — U2/4D /’UJZc — 'U2

and for the model by Ludwig et al. we obtain

4D 4mD + 02
L= — =2 arctan [ T (3.33)
\ /v]% — 2 vy — v

wherev; = 2y/Duy. Note that bothZ{ and LV approach infinity as» — v;. In particular,
this can happen iD — D,.;, = v?/4uo which is of importance in marine biology as climate
models predict that the ongoing global warming may resudt mgher stratification of the ocean
water [6, 91], increasing thereby the requirement on thecati(vertical) patch size for sinking
phytoplankton species.
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Persistence in a river Speirs and Gurney [99] investigated the conditions for tbputation
survival in a river of lengthZ, and with a flow velocityv. This problem is known as the “drift
paradox” because any advection will ensure that the avdomgéion of a population will move
downstream, so at first glance it seems counter-intuitia¢ ghpopulation can persist in a river
[28]. In their study Speirs and Gurney used the linear magl@) and assumed an impenetrable
boundary upstream and a totally hostile environment dawast. In this model the critical sizZ&
of the favourable patch depends on the ratio between the éiocity v and the front propagation
velocity vy

2D v} —v?

LY = ——— arctan

2,9
vy —

02

Note thatL" again increases with an increase of the advection velociyd approaches infinity
asv — vy. Furthermore, because the favourable patch in this modebhly one boundary with
the hostile environment, we obtain the liniit — L,/2 asv — 0, whereL, is the critical patch
size (3.12) of the KiSS model.

Extending this model, Pachepsky et al. [75] derived coodgifor the persistence and spread
of a population of organisms living and reproducing on thdireent and occasionally entering the
water flow where they can drift and disperse.

Locally elevated growth rate Dahmen et al. [14] considered another extension of the nipdel
Ludwig et al. (3.15), assuming an advective flow and peribdigndary conditions. Furthermore
they suggested a simple experimental set-up in which a liigiited colony of bacteria grows on
a ring. Almost the whole ring is shaded and unfavourableHergopulation. Only a small area is
illuminated through a window of length, which moves around the ring with a constant velocity
v. Up to a change of reference frame, this set-up is equivébesm advective flow and, changing
the speed, one can easily regulate the “advection” rate.

Depending on the parameters and the velocity of the lighplsuthe population can become
extinct, can be localised (the maximum of density trackddlation of the favourable patch), or
delocalised [64] (due to the periodic boundary conditidres population can survive even if the
advection velocity exceeds the propagation velocity provided that the average growth rate is
positive). Fig. 8 shows an example for such a localisation.

Solving the eigenvalue problem Dahmen et al. exploited alaiity of equation (3.27) to
the well studied “square well potential” problem of quantarachanics [53]. They showed that
depending on the dimensionless parameter (2/L)./D/(10 + m), which characterises the
growth rate in relation to the diffusivity and the habitandgh, the critical flow velocity can be
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Figure 8: Locally elevated growth rate provides the pegsisé of a population in an advective
flow with velocity v, Dahmen et al. [14]. A favourable patch({) = 1o > 0) is indicated by the
horizontal thick line.

Dr? .
v, = 2\/D(u0— LZ)’ fz<1
B (o +m)L]>  m L
Ve = 2DJ<{ 5D ik ifz>1

where all parameters have the same meaning as in (3.15). rhediution also corresponds to
the limit of high mortality (» — oo) and coincides with equation (3.29), which was derived for
the KiSS model with advection. The second solution dessristrongly mixed system. If the
advection velocity is higher, the population becomes extiifhe value of the critical patch size
and the critical diffusivity can be easily expressed froraawmpn (3.34).

Examining bacterial growth, Lin et al. [55] confirmed theuks of Dahmen et al. [14] ex-
perimentally and by means of numerical simulation. Joo agloblwitz [43] carried out computer
simulations in a stochastic spatially discrete populatiwdel and obtained similar results, con-
firming the robustness of the model.

expressed as

(3.34)

Locally elevated diffusivity Consider a population growing on an infinite favourable patcan
advective flow. If the diffusion is too low this patch will nptovide a proper propagation velocity
(3.19) and the population will become extinct. Straube aik\Bky [101] noted that locally
increased diffusivity can drastically change the situati& sufficiently large and well mixed patch
can stop the drift of biomass, stabilising the populationaiyiics downstream (Fig. 9). Straube
and Pikovsky considered the Fisher-Kolmogorov equatidh advection (3.21), assuming that a
patch of length has an elevated level of diffusiviy;, which exceeds the diffusivit® in the rest
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Figure 9: Locally increased diffusivity stops the popwatwash-out in an advective flow with
velocity v, according to Straube and Pikovsky [101]. The horizontigktblack line indicates the
location of the patch with increased diffusivity; .

of the habitat. Note that if the diffusivity depends on thembnate,D = D(z), equation (3.21)

takes the form oP (.1 . op o op
€, . IR o or
= P (1 K) Yor T or [D(x)ax] '
Straube and Pikovsky [101] showed that the population gasyif the size of the intensively mixed
patch is larger than

2D v — v
Ly = ———"Y  arctan !

vV 4po Dy — v? 4o Dy — v?

As the diffusivity D, approaches infinity the critical patch size approaches

v2 — UJ%
lim L. =
Dj—o0 2,&0

Thus, even for the infinite mixing intensity the critical platshould be of finite size.

Techniques from quantum mechanics Birch et al. [4] considered the Fisher-Kolmogorov equa-
tion with variable growth rate and advection on a 2D planghisstudy they made use of the struc-
tural similarity between equation (3.27) and the time-peledent Schrodinger equation. Based on
this similarity, they demonstrated a few examples wherafpication of perturbation theory, the
method of Wentzel, Kramers, and Brillouin (WKB), and otheagtum mechanical techniques are
beneficial for the analysis of equations similar to (3.2@)péarticular, Birch et al. were able to de-
termine a trade-off between the critical diffusivity anagth rate, which provide the persistence
of the population in this system. We believe that the appboaof such well-known techniques
from quantum mechanics has not been fully exhausted yeth Bwethods could be a promising
direction for the further development of the theory of exked populations.
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Summary At the end of this section we want to summarize the main resu@in an infinite
homogeneous patch a stationary state is achieved whendhghgrate is equal to the mortality.
On a finite patch, which adjoins some unfavourable envirartntée growth rate should exceed
mortality to compensate for losses across the patch eddes.infernal patch production grows
with the patch size and with the growth rate, whereas theetoasthe edges increase with the dif-
fusivity. The spread of organisms over a habitat is definethbypropagation velocity of the front
of the population density. This velocity scales as a squartaf the growth rate and diffusivity. A
population can survive in a flow only if the propagation véipcs higher than the velocity of the
flow.

Thus, an increase of the growth rate improves the condifarike survival on a finite favourable
patch and in a flow. The increase of the patch size increasesttdrnal patch production, whereas
the losses across the patch edges show only a weak depentibaaxzitical patch size is achieved,
when the internal production is balanced by the externades The size of a large habitat has
a small influence of the propagation velocity. However, afausurable environment around a
small favourable patch truncates the propagating frorg,ddin essentially reduce the propagation
velocity and worsen the conditions in a flow. Finally, an gase of diffusivity on a finite habitat
increases the losses into the unfavourable environmenthvdan lead to the population extinc-
tion. However, a minimal level of diffusivity is necessaoygdrevent the population wash-out in a
flow. These two opposing processes result in a diffusivitydeiw, which provides the population
survival on a finite habitat. This window exists only if theWl@elocity is less than some critical
value.

4. Vertical phytoplankton distribution

In the previous chapter, using simple one-dimensional ispde discussed the influence of mix-
ing and advection on the population survival in a heterogaseenvironment. To model a non-
uniform environment, we simply used an explicit form for grewth rate ..(x), however we did
not discuss the origin of this heterogeneity. In this chapte extend these results by considering
more complex models which describe resource limited pajomgrowth. These models are based
on simple physical and biological laws and consistentlydbs the dynamics of a population and
its limiting resources. Thus, they demonstrate naturahaeisms which lead to the appearance of
favourable patches. The intention of this chapter is twbfoin the one hand we aim to illustrate
how the main findings of the previous chapter apply to theedrdf consumer-resource models.
On the other hand we show new effects arising due to new prepgwhich are not present in the
simple models.

The main object, which we will use for illustration, is therdymics of a vertical phytoplankton
distribution. This is important as phytoplankton are thinary producers in almost all aquatic
food webs with a major influence on nearly all freshwater ardine ecosystems. The two main
factors limiting the production of phytoplankton are thaiability of nutrients and light. To un-
derstand how these resources affect the phytoplanktondsisntonsider their distributions in a
water column. In general, the light intensity reduces webtth and, in nutrient rich regions of the
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ocean, the well illuminated surface layer constitutes adaable area for photosynthetic phyto-
plankton species. By contrast, the nutrient concentratzambehave just in the opposing way. The
sedimentation of dead biomass (detritus), with the suasessmineralisation in the deep layers or
in the sediment [16] causes an increase of the nutrient obrat®n with depth [117]. Thus, while
light limitation may lead to the formation of a surface phplankton maximum, a lower nutrient
concentration favours a phytoplankton build-up in deepgells. This tension between light and
nutrient limitation from two opposite sides frequently sas optimal growth conditions in subsur-
face layers (e.g. [1, 13, 31]). This fact often leads to theeapance of maxima of chlorophyll
or biomass distributions at approximately 30-100 m deptb.c&led deep chlorophyll maxima
(DCM) [1, 111, 13, 110, 31] and deep biomass maxima (DBM) El@re ubiquitous phenomena
and can be observed in many oligotrophic regions in the qaearine systems, and deep lakes.

Another important component of a stratified water colummisipper mixed layer (UML). A
UML commonly occurs in oceans and lakes due to mechanicaintation of the surface waters
(e.g. due to wind, waves, and storms). This layer is sephfaim the deep layers by a thermocline
[12], which is defined as a relatively thin layer below a UMLachcterised by an strong change
in temperature with depth. Mixing in a UML is much strongearhn the layers below it. As a
result, the distributions of nutrients, temperature,rsgli etc. are nearly uniform in a UML and
have gradients below it. The depths of a UML can usually veosnf10 m to 100 m, see e.g. [110].

Compared to the models of the previous chapter, the systbavimeir in a water column can
be further complicated due to a feedback loop between thredse and resource distributions. The
growing biomass shades light, consumes nutrients and imeeatised, which ultimately changes
the total resource distribution. This, in turn, can lead toev biomass distribution, which will
generate a new resource profile and so on. As will be shownbéehese complicated, self-
organised dynamics can lead to new phenomena and diveraeibeh For example, if the mixing
is small, the final solution becomes non-stationary andlases [36], whereas in the presence of
an upper mixed layer the system may exhibit bistability dmedolution may be sensitive to the
initial conditions [118, 89].

Equation of growth To formulate a mathematical framework for this chapteruketonsider a
vertical water column of depth. Let P(z,t) denote the density of phytoplankton at tinand
depthz. Note thatz = 0 denotes the sea level surface and tkaxis is directed downward. For
the sake of simplicity, assume that phytoplankton growtimged only by the availability of light
and a nutrient (the model can easily be extended to take atouat multiple nutrient limitation
[26]). In our approximation the dynamics of a phytoplankpapulation obey a reaction-diffusion-
advection equation, similar to equation (3.1) considemete previous chapter (see [85, 95, 46, 36]

among others)

OP(z,t) orP 0 0P
wherem is the mortality (compare to equation (2.3))is the phytoplankton sinking velocity, and
D is the diffusivity, which in general can depend an

Furthermore, the growth rajg NV, I) depends on the local values of light intensity, t) and

nutrient concentratiotV (z, t) at each vertical position. If both nutrients are essengi@\, /) can

(4.1)
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be represented in the form of Liebig’s law of minima

u(N, I) = pomin [f(1), fn(N)] - (4.2)
It can be also written in the multiplicative form
p(N, ) = po fr(I) fn(N) . (4.3)

Here 1 is the maximum growth rate anf} (/) and fy(/N) describe the limitation by light and
the nutrient. The specific form of these functions dependmany factors, for instance, strong
light may photoinhibit photosynthesis and reduce the gnoate for large values df[83, 22, 86].
However, usually it is suggested thatr) — 1 asz — oo, that is, the maximum growth rate is
achieved when all resources are unlimited. For phytoptanktodelling, the most frequently used
form is the Monod (or Michaelis-Menten) kinetics [107]

I N
fz(f):ma fN(N):HNJFN,

where H; and Hy are the half-saturation constants for nutrient-limited &ght-limited growth,
respectively. However, this non-linear form often admitg/axumerical investigation. Analytical
solutions are commonly possible only for a linear or algebi@m of f(x) [95, 17].

(4.4)

Boundary conditions By default, we assume that the surface and bottom are imadhetor
=0. (4.5)

phytoplankton
<vP(z, t) — Da—P>
0z 2=0,Zp

To model a stratified water column, one can either separatilye the equations in a UML
and below it, supposing infinite mixing within the UML and aahdiffusivity D in deep layers.
Assuming continuity of the flux across the thermocline, weaobthe boundary condition at the
bottom of a UML (see e.g. [35])

VP()].—zp 0 = (UP@ } DD%S)

Y

Z:ZT+0

whereZ is the depth of the thermocline. On the other hand, to siraula water column in a
single framework, one can assume a gradual transition froiila to the deep layers [89]

Dy — Dp

D(z) = Dp + 15 o-Z0)/w °

(4.6)
where D, and D, are the diffusivities within and below a UML, respectivedyyd the parameter
w characterizes the width of the thermocline.

So far, we did not specify any equations for the distributtdmutrients N (z,¢) and light
I(z,t). In the next two sections we will review several models wrdohple the light and nutrient
dynamics with phytoplankton growth (4.1). First we will &der models in which phytoplankton
growth is limited only by the light availability, whereas amsecond step, we will review more
complex models, incorporating both light and nutrient tation.
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4.1. Light limitation

In this section we will consider theoretical models in whibh light gradient is a key factor. Such
models give an adequate description for eutrophic aquaticaments (as observed in many re-
gions), where the nutrients are in ample supply and lightbvess a crucial factor which determines
the distribution and the dynamics of phytoplankton [59, B0J. So in the following we assume
that the nutrient dependence of the growth rate is saturgitgdv) — 1, and we can neglect the
limitation of growth by nutrients.

The spatial profile of light intensity in a water column is deised by Lambert-Beer’s law (see
e.g. [45]) which states that the gradient of light intensitydepthz is proportional to the light
intensity at this depth

dl

dz
The coefficient includes both the absorption of light by water and the atiéion by the phyto-
plankton cells

—rI . (4.7)

k= Ky, + kP(z,1),

where K, is the background turbidity anklis theper capitaattenuation coefficient of the algae
cells. Integrating (4.7) from surface to depthwe obtain

I(z) = Lipexp {—Kbgz - /Z kP(t, z/)dz'} , (4.8)
0

wherel,, is the light intensity at surface.

Equations (4.1) and (4.8), being coupled by means of the throate (4.2) or (4.3), yield an
integro-differential system of equations. It is not sthafgrward to obtain rigorous or analytical
results for such a system and even a numerical solution etecucertain difficulties [35, 103].
Nevertheless, without solving any equations, it is cleat the light intensity in the water column
is reduced with increasing depth. Thus the light limitatitorms a favourable area close to the
surface, and the dynamics of the phytoplankton populatimulsl be related with the results of
the previous chapter, obtained for heterogeneous enveatsin the presence of advection and
diffusion.

Critical values for phytoplankton growth  Depending on the depth of a water column or on the
diffusivity, a light limited phytoplankton population caurvive or become extinct. Huisman et al.
[33, 35] combined the conditions for survival into a singbaception of the critical conditions for
phytoplankton blooming in a closed water column (Fig. 10Ad avithin an UML (Fig. 10B). The
main difference between these models is that in a closedrsyshe sinking of cells is stopped at
the bottom, whereas in an UML the biomass can sink acrosh#rentcline to the deep aphotic
layers.

To determine these conditions, consider first an unstratfigter column with a constant dif-
fusivity and assume impenetrable boundary conditiong (dr3he phytoplankton biomass. Using
the system of equations (4.1) and (4.8) in the limit of zerckigaound turbidity,k;, = 0, and for
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Figure 10: Critical conditions for phytoplankton bloomirn{@) in a closed water column and (B)
in an upper mixed layer. Both figures are reprinted from Jaluoh Sea Researcd,8, Huisman
and Sommeijer, pp. 83-96 [35], Fig. 4 and 6, with permissibtne author.

a general monotonic growth ratg /), Shigesada and Okubo [95] showed that a sinking phyto-
plankton species can establish a population only if

U2

(L) —m)

This expression coincides with condition (3.23) from thevious chapter and implies that the
minimal diffusivityshould provide a front propagation velocity which is largjean the sinking
velocity. The same condition was derived earlier by Rileg][@nd other authors from the Fisher-
Kolmogorov equation. It is interesting to note [95] thatAf, = 0 and a non-trivial solution
exists, then the total biomass in this model does not depertieosinking velocity. The sinking
just shifts the bulk of biomass downward, preserving, hawewhe total amount of biomass in the
water column (Fig. 11A).

Ishii and Takagi [40] relaxed the conditidiy,, = 0 and proved some existence, stability and
uniqueness results for this system. Assuming an algeboaic 6f the growth ratey(7) ~ 17,
Ebert et al. [17] have found some approximation for the malidiffusivity, D,,;,, and for other
critical parameters.

If a water column is sufficiently deep arid,, # 0 then the net production rate is positive only
above thecompensation deptt¥., which is defined as the depthat which the local production
rate is zero in the absence of biomass (Fig. 11B). From tihé éigenuation curve (4.8) we find

7. = Inl;, —Inl. 7
Ky,

wherel. is defined as the compensation light intensity at which tbevtr rate is equal to mortality,
wu(I) = m, thereby the compensation depth is species specific.
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Figure 11: (A) Vertical profiles of phytoplankton for diffemt values of the dimensionless sinking
velocityw = v/poD [95]. While the shape of the profile is changed, the total amofibiomass
in the system remains unchanged. The figure is reprinted daumnal of Mathematical Biology,
12, Shigesada and Okubo, pp. 311-326 [95], Fig. 4, with peronssf the author. (B) Schematic
representation of the compensation deftland the critical deptty..,.

If a water column is shallower than the compensation deptdhvanassume that the bottom is
impenetrable for the biomass, then the population canweiexien if mixing is less than a minimal
diffusivity (4.9) because the cell settling will be stoppsdhe bottom (Fig. 10A).

In general, the compensation depth divides a water colurton anfavourable and an un-
favourable regime (Fig. 11B). In a well mixed water colume tbsses in the deep layers can
lead to the population extinction. However, they can be cemspted by the production in the
euphotic zone, if the unfavourable region is relatively Bn@onsidering a simple mathematical
model of a well mixed water column Sverdrup [102] definexliical depthas the depth of a water
column at which the total growth is equal to the total lossiohtass. Similar to the compensation
depth, the critical depth can be reinterpreted in termsetititical light intensity [37]

 In T —In Loy

ZCT )
Ky,

wherel,,; is the light intensity at the bottom of a sufficiently shall¢@w; < Z.,.) closed water
column after the light limited population of phytoplanktbave reached an equilibrium state. The
critical depth depends on many parameters, it increaséstigtincident light intensity and with
the phytoplankton growth rate, and it decreases with thdatityrrate [37].

In a well mixed water column, an excess of the critical deptarahe compensation depth
determines the maximal possible losses in dark layers, wtam be still compensated by the
production in the euphotic zone. However, similar to the Ki8odel or to the model by Ludwig
et al. (see Sec. 3.1.) these losses diminish with a decréaneing. Extending this research,
Huisman et al. [37] showed that if the depth of a water columamthermocline exceeds the critical
depth, the population survival still is possible if turboienixing is less than emaximal diffusivity
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This critical condition is similar to the existence of theximaal diffusivity (3.13) and (3.30) in the
KiSS model, however here it describes the behaviour of a mealestic system. Therefore similar
to the KiSS model in advection (3.30), a sinking populatian survive in a water column of any
depth if mixing remains between a minimal and a maximal véhig. 10A).

We now turn to a stratified water column with a UML. We assune the mixing in the
deep layers is less than a critical value (4.9), so that thmillation survival will depend on the
characteristics of a UML. Condie and Bormans [12] showetliffleUML is shallower than

v
’ p(lin) —m

a population cannot survive (compare with (3.31)). In otlwerds, for the survival in a UML,
the demographic time scale should be faster than the cleaistit time of advection. However
usually, Zr ..., is sufficiently small and this criterion is satisfied. In tieEsse the population can
persist if the strength of mixing remains within the turbdleindow|[D,,.;,,, Dina.| (Se€ Fig. 10B).
Furthermore, if the diffusivity exceeds a maximal value plopulation survives if the depth of a
thermocline is smaller thanmaximal depthwhich is defined as the maximal depth of a well mixed
upper layer at which losses and production are equal. Tipithdgslightly smaller than the critical
depth in a closed water column, owing to additional lossdsahass across the thermocline.
The fact that a deep upper layer can prevent phytoplanktmnihg was noted experimentally
in 1935 by Gran and Braarud [23], who investigated the camabtof phytoplankton blooming in
the upper mixed layer. They reported that until there edstsep UML, phytoplankton production
cannot exceed the destruction by respiration and phyt&f@arblooming is not possible. The
concept of the maximal diffusivity is also consistent witkldi experiments, see e.g. [106, 18, 76].

4.2. Light and Nutrient limitation

In the last section we will discuss models which take intcoaot both light and nutrient limita-
tion of phytoplankton growth. These models are more diffibolanalyse and often admit only
numerical investigation. However, they are more realiatid provide some understanding of the
processes occurring in deep waters of many regions whefacsulayers are nutrient depleted
[85, 113, 82, 115, 112, 109, 36]. Furthermore, in the tensidmvo opposing resource gradients
the location and the size of a production layer becomes diumof the phytoplankton abundance
and the initial conditions, that can lead to new patternsreavd dynamical behaviour.

A coupled system of reaction-diffusion equations desoghiutrient-phytoplankton cycling
was probably first investigated by Okubo [69, 71]. Radach lslader-Reimer [85] suggested
a mathematical model of phytoplankton growth which inclitight-nutrient-phytoplankton dy-
namics. This model was extended by Jamart et al. [41] whoidered limitation by two nutri-
ents, grazing and the variability of the parameters withtldemd time. This approach (see also
[113, 82, 115, 112]) gave rise to a growing set of ecologicatlats, which include cycling of
many chemicals [117], coupling with meteorological dat2][4nterplay of different phytoplank-
ton groups, and 3D simulations [60, 21]. Here, however, wiefadus on the theoretical aspects
and consider only simple conceptual models.
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Conservative models The nutrient dynamics include uptake by phytoplankton,inenalisation
of dead biomass back into a nutrient pool and diffusion. Assg absolutely effective recycling
we obtain

oP(zt) oP &P
(4.10)
ON(z,t) O*N

where the biomass is measured in terms of its nutrient co(@empare to the non-spatial version
(2.3) of this model). We do not include advection in the secequation, as nutrients, which are
dissolved in water, are only slightly influenced by the giaforce. Nevertheless, this term should
appear, if advection is caused by a vertical or horizontabsh.

Furthermore, we assume that the nutrient cannot diffusesathe surface and a large nutrient
pool in the sediment or in deep ocean layers sustains a camstacentrationNz, the bottom of
the water column

ON(0,1)
0z

Fig. 12 shows typical final distribution of phytoplanktondamutrient given by model (4.10),
supplemented by equation (4.8) for light. Hodges and R&di3i@] pointed out that, independent
of the functional form of the growth rate and of the light distition (assuming that light decreases
with depth), this model can reproduce a deep stationaryoptgmikton maximum only i > 0.

In other words, the presence of opposing resource gradents sufficient to reproduce a deep
phytoplankton maximum. To prove this, let us define the totalcentration of the nutrient as
S = P + N. Consider an equilibrium state, when the left-hand-sidé4df0) equals zero. By
adding both equations (4.10) we obtain

—0, N(Zp,t)=Ng. (4.11)

Assumingv = 0 and integrating this equation oveme find

orP  ON
0z 0z i 0z

owing to the boundary condition (4.5) and (4.11) at the swfahusS = N + P = const and a
deep phytoplankton maximum should be accompanied by a deemum of nutrient. However,
if the light intensity reduces with depth, this profile is tatde because there is no factor limiting
phytoplankton growth in the upper layer. Thus this systewuhexhibit a surface maximum
(Fig. 12A). However, similar to the model without nutriemblitation (Fig. 11A), the phytoplankton
sinking shifts the maximum of biomass downwards (Fig. 12B).

Extending this model, Hodges and Rudnick [30] included aitdéipool, 7'(z, t), as the third

= const = 0,
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Figure 12: (Colour online) Typical distributions of phytapkton (green), nutrient (blue), and
light (red) in the conservative model (4.10) without sirki®\) and with sinking (B), according to
Hodges and Rudnick [30].

compartment
OP(z,t) B oPr 9*P
% w(N,I)P —mP —'Up—az + D—8z2 ,
IT(z,t) oT 0T
7 — e il 412
o mP —rT v ER + D R ( )
ON(z,t) O*N

wherevp andvr are the sinking velocities of phytoplankton and detrituspeztively. Note that
usually detritus sinks much faster than phytoplankton 4, In this model the cycle of chemicals
includes three stages: the transfer of biomass to detritissmaortality m, the remineralisation of
detritus back into nutrients with remineralisation rateand finally the consumption of nutrient
by biomass. While this model can exhibit deep maxima i 0, the change of phytoplankton
concentration is very small and cannot represent real datapparent maximum can be observed
only if one assumes sinking of detritus or phytoplanktondgks and Rudnick extended this state-
ment to any number of compartments, which however do noidectiepth dependent parameters.
Thus, sinking is a major component of this system. The sedliatien of organic matter removes
the nutrient fixed in phytoplankton cells from the upper layéhich leads to the formation of deep
phytoplankton maxima.

Beckmann and Hense [3] performed numerical simulationgaady/tical evaluations of model
(4.12), assuming that detritus sinks relatively fast, velhsrthe phytoplankton sinking is negligible.
Fig. 13 reproduces a typical distribution of physical cleégastics in this model. Furthermore,
Beckmann and Hense suggested to extend the concept of ceatiperdepths. Instead of the static
definition in the absence of biomass they suggested to usdytmamical depths at which thesitu
production rate of phytoplankton is zero, owing to the lightutrient limitation. If phytoplankton
sinking velocity is zero then in equilibrium (see (4.12)gsl values can be expressed from the
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Figure 13: (Colour online) Typical distributions in the ¢ler compartments model (4.12). (A)
Vertical profiles of phytoplanktonK), detritus (), nutrient (V), and light (). (B) The upper
and lower limits of the production layer (dashed lines) &ie$pecies compensation depths. The
figures are reprinted from Progress in OceanograpbyBeckmann and Hense, pp. 771-796 [3],
Fig. 2, with permission of the author.
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whereZ™ andZ{" are the compensation depths due to nutrient and light lirarigFig. 13B).

Non-conservative models Model (4.12) contains three reaction-diffusion equatiang an equa-
tion for the light distribution. This makes further analysiifficult. However, since detritus sinks
relatively fast [94, 84], we can simplify the model assumihgt a part: of the dead biomass is
instantly remineraliseth situ, whereas the rest sinks until it reaches the bottom andissst@on-
stant nutrient concentration at the bottom. Thus we obtarfdllowing non-conservative system
of equations

OP(z,t) oP 0?P
(4.13)
ON(z,t) O*N

——— = —u(N,)P+emP+ D

ot
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This model (compare to equation (2.7)) can reproduce degfplankton maxima even if the
sinking velocity is zero, owing to the fact that a pétt— <) of the fixed nutrient is implicitly
transferred from the upper layer to the bottom. Even thobghrhodel is non-conservative and
has apparent disadvantages, it or similar models were ssigedy applied to reproduce field data
[41, 109, 36, 118]. However, we are not aware of any comparmgaohe two model classes (4.10)
and (4.13), which might be interesting.

In the case of zero sinking velocity, Klausmeier and Litchr{¥#6] performed analytical calcu-
lations for model (4.13). Assuming that the phytoplanktgsirtbution can be approximated by a
Dirac §-function and further that an infinitely small productioyéa should be located to balance
the light and the nutrient limitation, Klausmeier and Litcan found an equation for the position
Z* of a deep maximum, which for boundary conditions (4.5) antii}reads as

In (/1) B Kng* _ poD(Np — N,
k k m(l —e)(Zg — Z*)’

where N, and . are the critical values of light and nutrient intensity folniah the growth rate is
equal to the mortality rate.

Oscillations and chaos Huisman et al. [36] pointed out that system (4.13) exhibstsiltations
of biomass if the mixing is reduced below a critical valueg.Ri4 shows the behaviour of biomass
and of nutrient in two typical cases. In the first case (Figa)the mixing intensity is high enough
to provide a stable distribution of biomass. If however gaeel of diffusivity is reduced, then only
oscillatory, or even chaotic patterns, can appear (seelBig.and 14c). As noted by Huisman
et al. these oscillations are caused by the difference inithe scales of the rapid transport of
phytoplankton, consuming the nutrients, and the slow ugwransport of nutrients. Furthermore,
as shown in Section 3.3., for the survival of a populatiomiradvective flux the diffusivity should
exceed a minimal level (3.30), which increases with the cada of the habitat and of the growth
rate. In the absence of biomass the nutrient can be neadgronty distributed over the water
column, thereby the growth rate becomes only light limited the production layer extends from
the surface to the compensation depth, which is usuallycgerdily large. Thus, without biomass,
the level of mixing might be sufficient to induce populatiomgth. However, the consumption
of nutrients and self-shading of light reduce both the ghorate and the width of the production
layer. That, in turn, increases the value of the minimalugiffity (3.30) and finally the sinking
may lead to the population wash-out if the diffusivity in thrater column becomes insufficient.

Koszalka et al. [50] noted that the periodic oscillationpb§toplankton biomass will be most
probably disguised by currents and horizontal inhomodgimeia real ecosystem.

Upper mixed layer Hodges and Rudnik [30] and Beckmann and Hense [3] showedf thelf-
shading of light can be neglected in equation (4.8), thenpgeumixed layer does not lead to any
gualitative changes in the system dynamics. However, Yasha and Nakajima [118] pointed out
that a UML can lead to bistability of phytoplankton profiles.

Ryabov et al. [89] generalised this result by taking intooagt the competition of two species
and relaxing other assumptions. They considered the mddEB), assuming a gradual change
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Figure 14: (Colour on line) Evolution of the phytoplanktoengity and the nutrient concentration
with time. (a) A stable DCMD = 0.5 cm?/s), (b) small oscillations in the DCMQ = 0.2 cm?/s),
and (c) large-amplitude oscillations in the DCM, with daaipkriodicity (© = 0.12 cm?/s). The
figures are reprinted from Naturé39 Huisman et al., pp. 322-325 [36], Fig. 2, with permission
of the author.

of diffusivity (4.6) from a UML to the deep layers, and showtat under certain parameters,
depending on the initial conditions the production layen b& steadily located either within a
UML or below it. Fig. 15 provides a rough insight into the srstdynamics. In the absence of
an upper mixed layer the difference in the locations of bissrend of the production layer drives
the bulk of biomass towards the production layer (Fig. 15%)e shift of biomass can lead to the
redistribution of resources, which in turn can change tlvation of the production layer. This
process repeats until the system reaches an equilibriufigooation (Fig. 15B), when the centre
of biomass coincides with the centre of production. Now abgrsa system with an UML. In a

certain range of parameter the UML does not affect distidimstwith a deep maximum of biomass
(Fig. 15C). However, the initial growth of biomass withiretdML begets another stable solution
with a maximum of biomass located within the UML. The biomiasamost uniformly distributed

within the UML and its location is uncoupled from the locatiof the production layer (Fig. 15D).

As a result, a gradual shift of the bulk of biomass into degeigis no longer possible and the
transition to a deep biomass maximum can only take placeeifigfint intensity below the UML

is sufficiently large to provide positive net growth in dea@gédrs — otherwise the phytoplankton
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Figure 15: Typical vertical phytoplankton profilé¥z) in a system without a UML (top) and with
a UML (bottom), assuming a gradual change of diffusivitygj4n model (4.13). Without a UML,

a non-stable phytoplankton distribution (A) evolves toray stable solution (B). Under the same
conditions in the system with a UML, we observe two stabléridbistions: with a maximum in the
deep layers (C) and with a maximum in the UML (D). The dot-aakand dashed lines show the
limitations of growth (4.4) by light and by nutrient, respigely, vertical dotted line shows the level
of mortality. Black and grey arrows show the centers of bissrend net production, respectively.

remains trapped in the UML. Thus the production layer carupgdifferent parts of the water
column, depending on the current system state and on iodraditions.

5. Discussion

Concluding this review we would like to make a few notes. t-iet us compare the behaviour of
the critical patch models and those based on the consus@uee dynamics. The latter models
can be divided into two large groups. In the first group we \dontlude those systems in which
the location of a favourable patch is constrained by somea@mwental conditions. For instance,
the limitation of phytoplankton growth by light leads to tfegmation of the favourable patch in
the upper level of a water column. The dynamics of this groug @f the critical patch models
demonstrate many general traits and many effects can bicprd@dnd evaluated on the basis of the
minimal models. The second group consists of the models inohthe location of the favourable
patch is determined by the dynamical interplay of differfactors. For example, we can consider
the growth of phytoplankton biomass driven by two opposigpurce gradients. In this group,
the location of the favourable patch is not predefined. Megeahe system dynamics becomes
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very sensitive to the implementation of the consumer-resoaycling. This complexity leads to
the arising of new patterns and new dynamical behaviourghvban hardly be reproduced in the
framework of the critical patch models.

The second remark concerns the advantages and disadvaofaugetial differential equations
(PDEs) for modelling ecological systems. PDEs provide weryenient and powerful tools for the
investigation of population dynamics. First, in the sana@fework, we can consider such different
and complex phenomena as, for instance, the verticalloligiion of sinking phytoplankton cells or
the survival of a population drifting in a flow. Second, artiglgl solutions in many cases provide
important predictions and understanding of the main edfewmhich can appear in more realistic
systems. Third, one can perform an exhaustive numericallation of a model, determining all
possible bifurcation points. Finally, seemingly the pobhwthods developed for the analysis of
partial differential equations is not played out yet and #ypproach can still gain a lot of useful
techniques from quantum mechanics and statistical phybsiosever, we would like to mention
as well some restrictions of this approach. Intrinsicalig elways suggested that this approach is
suitable for systems containing many organisms, so thaethgve fluctuations of density become
negligible and all function are continuous. However thegestnent does not hold if we consider the
survival-extinction transition. As the system approacitesritical state, the population density
declines and the fluctuations of density (demographic ststatity) start to play a crucial role
[105]. Thus, in reality, the extinction of a population migiccur under conditions which still
allow for the population survival in a deterministic PDErfrawork. Therefore, the development
of a theory including stochastic effects is necessary fercibrrect representation of the transient
behaviour.
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