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Abstract. Organisms are involved in coevolutionary relationships with their
competitors, predators, preys and parasites. In this context, we present a simple
model for the co-evolution of species in a common niche space, where the fitness
of each species is defined via the network of interactions with all other species. In
our model, the sign and type of the pairwise interactions (being either beneficial,
harmful or neutral) is given by a pre-determined community matrix, while the
interaction strength depends on the niche-overlap, i.e. the pairwise distances
between species in niche space. The evolutionary process drives the species toward
the places with the higher local fitness along the fitness gradient. This gives rise
to a dynamic fitness landscape, since the evolutionary motion of a single species
can change the landscape of the others (known as the Red Queen Principle). In
the simplest case of only two-species we observe either a convergence/divergence
equilibrium or a coevolutionary arms race. For a larger number of species our
analysis concentrates on an antisymmetric interaction matrix, where we observe
a large range of dynamic behaviour, from oscillations, quasiperiodic to chaotic
dynamics. In dependence of the value of a first integral of motion we observe
either quasiperiodic motion around a central region in niche space or unbounded
movement, characterised by chaotic scattering of species pairs. Finally, in a linear
food-chain we observe complex swarming behaviour in which the swarm moves
as a whole only if the chain consists of an even number of species. Our results
could be an important contribution to evolutionary niche theory.

1 Introduction

The concept of an ecological niche is one of the most discussed, rethought and reviewed subjects
in biology [1]. While most ecologists today consider niche theory as a central and important
concept which serves as a link unifying evolutionary, population, community and ecosystem
ecology, the controversial discussion about the definition of a niche still remains a hotspot in
the scientific community – even to the extreme of some authors who propose that the concept
may not be needed at all in order to explain ecological and biogeographical patterns [2]. There
are two traditional schools defining the niche concept from different points of view: one referring
to the habitat a species needs for survival, and the other referring to the role or impact the
species plays in the community [1]. For the first time, the term “niche” was explicitly used by
Grinell [3] who defined a niche as “all the sites where organisms of a species can live”, i.e.,
where conditions are suitable for life. Ten year later, Elton [4] considered a niche as a function
performed by a species in its community, specifically the species’s functional role within the
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Table 1. List of all possible types of two-species interaction as represented by the elements aij of the
interaction matrix A.

aij aji Type of interaction
0 0 Neutralism, complete lack of interaction
−1 0 Amensalism, the interaction is detrimental to one species but neutral to the other
+1 0 Commensalism, one species benefits and the other is neither benefited nor harmed
−1 −1 Competition, the interaction is harmful for both species
+1 +1 Mutualism, both species experience benefit from each other
+1 −1 Predation or parasitism, one species benefits and the other is harmed

food chain. Thus, the first definition emphasises the “address”, while the second one stresses
the “profession” of a species [5].
Later on, Hutchinson [6] extended the concept, putting it in the framework of mathematical

formalism. His definition for a niche was that of the “sum of all environmental factors” acting
on the organism, hence the niche space would be an “m-dimensional hypervolume”. In this
way Hutchinson defined any number m of limiting factors (e.g., temperature, height, resource,
salinity, etc.) for a given organism and the niche is regarded as the range of those n factors in
which the species can live.
On the other hand, the Red Queen evolution hypothesis, as proposed by Van Valen [7],

states that for a species in an ecosystem it is necessary to develop continuously just in order to
maintain its fitness relative to the other evolving species. Thus the system can evolve without
any external influence, but only due to internal biological factors. The more interaction among
the species the stronger the Red Queen effect. This intriguing observation opened a polemic
discussion in the evolutionary biology regarding to the modes of evolution, i.e. continuous evo-
lution, gradualism and punctuated equilibrium [8,9], the evolution of sex [10,11] and ecological
communities assembly [12]. The Red Queen notion has been investigated in the context of the
evolutionary ecology [13,14] and adaptive dynamics [21–23].
In this article, based on Hutchinson’s metaphor of a hyper-dimensional niche space we

investigate Red Queen evolutionary dynamics of a community of n species. We define the
species as points in an m-dimensional niche space. The ecological relationships are defined by
a pre-determined community matrix, while the interaction strength results from the pairwise
distances of the species in the niche space. In this setting the coevolutionary dynamics is
implemented by the maximisation of the fitness function. This gives rise to an intricate
coevolutionary motion in niche space, which is investigated with analytical and numerical
methods. We first investigate the simplest case of only two species. Then we explore all
anti-symmetric three species communities and finally we study n-species predator-prey chains.

2 The model

Consider an m-dimensional niche space Ω. The dimensions of Ω may represent any environ-
mental parameter or living condition of a species, e.g. temperature, humidity, amount of light,
depth, etc. Our model describes the evolutionary dynamics of n species in this niche space,
where each species i = 1 . . . n is characterised solely by its position xi = {xi1, . . . , xim}. The
ecological role of a species within the community is determined by the matrix A with elements
aij ∈ {−1, 0,+1}, which define the influence of the i-th species on the j-th one. The matrix
A thus describes the adjacency matrix of the complex network of species interactions and for
example, might be thought to represent the topology of a food-web. The pairwise coefficients aij
and aji complete all classical types of ecological interactions between two species (see Table 1).
Note, that we do not consider self-interactions, i.e., the diagonal of A is set to zero, aii = 0.
Further, in our model the community matrix A is fixed a priory and does not change in the
course of time.
While the sign or the presence of the interaction between any pair of species is characterised

by the matrix aij , we assume that the interaction strength φ(xi,xj) is a function of the species
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positions in Ω. The main idea here is that two species are able to interact more strongly if they
are close together in niche space, while they cannot interact if they occupy different niches. Thus
the interaction strength should decay with the pairwise distance dij = |xi − xj| in niche-space,
i.e. φ = φ(|xi − xj|), independent of the interaction type. Of course, not all species which are
close in niche space do actually interact at all. Also, the proximity of two species in Ω does
not tell us anything about the type of interaction (e.g., predator-prey, competition, etc.). Such
properties in our model are determined by the matrix A. Thus, we propose to separate the
ecological interactions into two parts: a time-independent community matrix, which gives the
signs and type of the interaction, and a time dependent function φ(|xi − xj|), which depends
on the positions in niche space and determines the interaction strength.
With this in mind we suggest that the evolutionary fitness Fi of a species i is composed

as a sum of the pairwise contributions from all other species. Each contribution is given as a
product aij φ(dij) of the elements of the interaction matrix aij (the species’ ecological role)
with the distance dependent interaction strength φ(dij) (the species’s similarity)

Fi =

n∑
j=1

aij φ(|xj − xi|) + fi(xi), i = 1, . . . , n. (1)

Here fi(xi) describes an additional, external contribution to the fitness of species i which
specifies the favourable region or the niche preference in the absence of all other species. It
could represent for example a radial cost. Note, that the sum in Eq. (1) runs over all species
j �= i. In other words, we preclude evolution of species self-interaction and set the diagonal
elements to zero, aii = 0.
A common suggestion is that the interaction strength between two species should be a

monotonically decreasing function of the distance dij separating these species in Ω. In partic-
ular, in this presentation we model it as a Gaussian with a common width σ for all species
pairs

φ(dij) = exp

{
−d2ij
2σ2

}
. (2)

Renormalizing the niche space, we can set σ = 1 without loss of generality. Note that while the
interaction strength φ is defined to be strictly positive, the fitness Fi of a species in Eq. (1)
may well be negative.
Having with Eq. (1) defined the fitness Fi of a species as a function of its position in Ω, it

is straightforward to specify the resulting evolutionary dynamics. We assume that each species
evolves along the gradient of its fitness landscape trying to increase its adaptation within the
community. Thus we propose the following dynamic equations

ẋi = λi∇iFi, (3)

where λi denotes the mutation rate of species i. Using Eq. (1) the dynamics of each species
then is given by the set of evolution equations

1

λi

dxi
dt
=

N∑
j=1

aij
∂

∂xi
φ(|xi − xj|) + ∂

∂xi
fi(xi), i = 1 . . . n. (4)

This is our main equation and it fully defines the ‘coevolutionary’ process of the system. In
our model the evolution of a single species, by ‘climbing’ to the local maximum of the fitness
landscape, changes the landscapes of all those species which have an ecological link to it. Hence,
the process described by (4) can be interpreted as a dynamical adaptation driven by ecological
interactions. It results in a collective evolutionary motion of the species in the niche space. For
the sake of simplicity in the following we will always assume that the evolution is neutral in
the absence of all other species. This means that all external forces are set to zero, fi = 0.
Moreover, we always assume periodic boundary conditions for the niche space.
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Before we proceed with the analysis of the model some remarks are in order. First we
note, that our formulation of a species’ fitness bears some similarities to the seminal work by
MacArthur [25,26] who developed an elegant theory for the dynamics of n competiting species
on a resource continuum. He assumed that each species i occupies a certain area of the resource
spectrum according to an utilisation function ui(x), so that the competition strength between
every pair of species is proportional to their niche overlap uij =

∫
ui(x)uj(x)dx. In this way

the competition strength depends only on the species’ distance on the resource continuum.
Further, in the case of a Gaussian utilisation function ui(x) also the niche overlap uij is a
Gaussian of the form Eq. (2) [25]. In a very similar way our model suggests that each species
i = 1 . . . n occupies a circular niche of radius σ in Ω according to some (possibly Gaussian)
utilisation function ui(x). The niche position xi = {xi,1, . . . , xi,m} is given by the centre of the
utilisation function for each species and it is located at those conditions at which the species is
most adapted to live. In this formulation it is natural to assume that the interaction strength
between two species scales with the probability of interspecific interaction and we can thus
interpret φ(xi,xj) as the niche-overlap φ(xi − xj) =

∫
Ω
ui(x)uj(x) dx.

However, in contrast to the model by MacArthur our theory is not restricted to competi-
tion. Instead we assume that closeness in niche space will increase the strength of all types of
species interactions, such as predation, mutualism, etc. While this approach is mathematically
very convenient and allows us in a straightforward way to consider very different species in the
same space Ω, the plausibility of this basic assumption depends on the interpretation of the
niche axis in the specific ecological system under consideration. For example, the position xi
might quantify the habitat type where species i lives, the climate conditions it is best adapted
to or the position along an environmental gradient. Typical examples include e.g., geographic
altitude, humidity, light intensity, salinity or temperature. Clearly species, even if they are eco-
logically very different, will interact more strongly if they are similar in such an environmental
space. In an estuary, for example, a two dimensional niche space could represent the salinity
and turbidity of the water as environmental factors. Organisms living in the estuary might be
best adapted to some positions along both salinity and turbidity gradients. Alternatively, the
niche position might describe certain species traits, such as daytime of activity. Again, species
with similar time of activity will have a greater chance to meet and interact, independent of
whether the interaction is harmful or beneficial. Further, the niche space Ω might also represent
a chemical space of molecular locks and keys or signalling substances. Thus, we believe that our
basic model assumptions should give an adequate description for a large class of environments
and species traits.
However, while this holds for some traits or environmental conditions, we are certainly

aware that many ecological interactions cannot be described in this formalism. Most promi-
nently the interaction strength will usually depend on many other factors than just the niche-
distance. Also it is not clear that all the species in a community can be described in a single
niche space. In a high-dimensional niche space one would assume that the interaction strength
does not depend on the full distance but only on the distance regarding a certain sub-space
or projection. Further it may well be possible that the functional form of φ(d) changes with
the interaction type and for certain interactions does not decay with the distance d, and it
may even depend on the spatial positions in niche space, φ(xi,xj). Take, e.g. the body size
(or related quantities such as skull length or beak size) which is a prototypical trait to deter-
mine the strength of interspecific competition. However, even though competition might be
largest for two species of equal body size, this is usually very different for other interaction
types. For example, in a predator-prey pair the predation rate should be maximal for a certain
ratio of body sizes and also in parasite-host systems frequently strong interactions are achieved
for drastic differences in body size of host and parasite.
As another difference to the work by MacArthur and many others [25,26] our model does

not take species densities into account. This is an enormous simplification, because many evo-
lutionary processes and parameters, such as mutation rates or extinction probabilities, depend
on the population density. In this sense our model, at best, can only provide a sketch of the real
evolutionary dynamics. On the other hand, this restriction makes model very general. While
one certainly can generalise Eq. (4) to include population dynamics, e.g. of Lotka-Volterra type
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Fig. 1. Evolution of two species in a two-dimensional niche space Ω for a pair of mutualists (A),
competitors (B), or a predator-prey system (C). Solid and dashed lines show the trajectory of the first
and second species, respectively. The initial positions are labeled by open circles and the direction of
motion is marked by arrows.

equations, such a procedure would include many additional assumptions (e.g. about analytic
forms of saturation and density dependencies, relation of ecological vs. evolutionary time scales,
etc.) and further give rise to technical problems that one would have to overcome, for example
the avoidance of population explosions due to mutualistic interactions. All these problems and
further choices do not arise in our model formulation, which makes our model very general and
easy to analyse. Nevertheless we believe that many of the dynamic properties of our model will
extend also to more involved formulations including population densities.

3 Two species model

In this section we consider the simplest case, namely the interaction of only two species, n = 2.
In this case the matrix A of interspecific interactions has only two non-diagonal terms

A =

(
0 a12
a21 0

)
. (5)

When only two species are present the gradient of the fitness function for each of the two
species must point into the direction of the other species. Therefore, the resulting evolutionary
dynamics is independent of the niche space dimension m and takes place on a one-dimensional
straight line which connects the position of both species (see Fig. 1).
Let z denote the position on the straight line connecting both species. Then the equations

of motion are

ż1 = λ1a12
∂

∂z1
φ(|z2 − z1|)

ż2 = λ2a21
∂

∂z2
φ(|z1 − z2|),

(6)

where the fitness depends just on the niche distance d = z2 − z1 between the two species and
might be given, for example, by our usual interaction function φ(d) = exp(−d2/2σ2).
Suppose first, for simplicity that the mutation rates λi = 1 and the interaction aij = ±1.

Then the system Eq. (6) allows for three qualitatively different scenarios. In the first case of two
mutualistic species the community matrix is given by the pair (a12 = +1, a21 = +1) and each
species derives benefit from the other. In the evolutionary process both species “walk” on the
fitness landscape φ(d) in search for a local fitness peak. Since φ(d) is supposed to be a monotonic
decreasing function of |d|, for each of the two mutualistic species this peak is determined by
the condition d = 0, i.e., it is placed exactly at the instantaneous position of their interacting
partner. Hence the two species coevolve in such a way as to shorten their mutual distance in
Ω and they obtain the maximal fitness value when they encounter. At this point the system
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reaches an equilibrium state. This is depicted in Fig. 1A which shows the trajectories of two
mutualistic species in a 2-dimensional niche space. We can interpret this dynamic outcome as a
tendency of the mutualistic species to occupy similar habitats, i.e., they adapt to live in similar
niches.
The outcome of two-species competition (a12 = −1, a21 = −1) is shown in Fig. 1B. Here the

interaction is prejudicial for both species, just in opposite to the previous case of mutualism. In
the framework of our model competition means that the interaction is harmful if both species
occupy similar niches, however it does not necessarily imply that they compete for similar
resources. From Eq. (1) the local fitness landscape is such that each species has a fitness valley
with the lowest value exactly at the actual position of its competitor. In the evolutionary
process of climbing toward higher fitness both species move apart from each other and become
increasingly separated in Ω. The system reaches an equilibrium state when both species are
located as far from each other as it is allowed by the boundaries. This behaviour of the two
competiting species is well known from ecological literature as character displacement. In our
case, using periodic boundary conditions, this means that the species are separated by a distance
of half the system size.
Finally, in a system of predator-prey or host-parasite type the interaction is given by an

antisymmetric matrix with coefficients (a12 = +1, a21 = −1). In this case one of the species
tries to avoid the contact, while its opponent benefits from the presence of its interacting partner
and aims to shortens the mutual distance. Clearly the fitness function of the predator has a
maximum exactly at the instantaneous position of its prey, while the prey fitness function has
a trough at the position of its predator. Thus, the prey’s favourable region is located as far
from the predator as it is allowed by the system. In this way a directed movement in the niche
space is generated and the pair moves uniformly with constant speed on a straight line in the
direction given by the prolongation of their difference vector in Ω. This dynamics mimics a
coevolutionary arms-race (see Fig. 1C). Since the other species is also evolving, each of the two
antagonists needs to “run for its life” in niche space just in order to keep its current fitness
level (Red Queen Principle [7]).
We want to stress however, that this arms race, where both species have precisely the same

evolutionary speed, is only possible due to a fine tuning of parameters. In general, one would
assume that this degeneracy is broken, either by one of the coefficients a12 or a21 being taken
to be larger or due to some difference in the mutation rates λi. In this case one of the species
will obtain a larger velocity and the coevolutionary arms-race eventually comes to rest, either
in the escape of the prey from or in its capture by the predator. To study this case we take the
difference of both equations in Eq. (6). The niche distance d = z2 − z1 evolves as

ḋ = (λ1a12 + λ2a21)φ
′(|d|). (7)

Usually we assume that the fitness peak is flat at the origin, φ′(0) = 0. This means that the
situation where both species have the same niche position z1 = z2 is always an evolutionary
steady (but not necessarily stable) state. However, since φ′(d) �= 0 for positive distances d > 0
an arms race, where both species evolve with constant velocity ḋ = 0, is only possible in the
degenerate case, λ1a12+λ2a21 = 0. Note that this can only happen for predator-prey or (+,−)
type systems.
In general, though, we expect that the system is degenerated and λ1a12+ λ2a21 �= 0. Then,

only two cases are left. If λ1a12+λ2a21 > 0, we may speak of general mutualism. This situation
might arise in two mutualistic species or in a predator-prey type system, if the prey evolves
more slowly then the predator. Since we have assumed that the interaction strength is decaying
with distance, φ′(d) < 0, and has a local maximum at d = 0, the distance d(t) between the two
species is always decreasing. This leads to a stop of the coevolutionary dynamics at full niche
overlap. In the opposite case, of λ1a12+ λ2a21 < 0, we have a situation of general competition,
which may arise in two competitive species or in a predator-prey system, if the prey evolves
faster than the predator. Now, the distance is increasing in time, ḋ > 0, and the two species
move apart.
From the ecological perspective this evolutionary outcome of a degenerated system, with

the predator either catching the position of the prey or the prey escaping, possibly may lead
to the extinction of prey or predator or both. However, in terms of our simple model this
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question cannot be answered since the model does not include abundances. In this context it
is worth to note that here the predator fitness is always positive, whereas the prey’s fitness is
negative. This asymmetry stems from the fact that in the model other ecological relations and
advantages of the prey, which do not depend on the niche position x1(t) of its predator, are
not taken into account even though they may contribute to the absolute fitness of the prey.
In principle, we could make allowance for such factors by including constant external forces,
fi(xi) = ci, in the fitness function, Eq. (1). However, we refrain from doing so, because such
terms will not change the resulting dynamics Eq. (4), which depend only the derivatives of
the fitness landscape. This of course changes completely, if one aims to generalise the model in
order to include species abundances, because then the absolute values of fitness become crucial.
Here, it is just important to keep in mind that in our model absolute fitness levels are not well
defined and it therefore does not make sense to weight the absolute fitness of different species
against each other.

4 Anti-symmetric interaction matrix

As the analysis in the previous section has shown, in the absence of external forces fi(xi)
sustained motion in our model is only possible with degenerated predator-prey type interac-
tions, while mutualisitic or competitive interactions favour stationary solutions. This corre-
sponds to the believe of many biologists that predation is one main mechanism responsible
for the evolutionary process [15,16,18,20,28]. In this study we are mostly concerned with
coevolutionary motion in niche space. Therefore, for further analysis of our model with a
larger number of species in the following we restrict us to the particular case of predator-prey
interactions (a more in-depth investigation of the general case will be presented elsewhere).
This restriction is not as severe, as it might seem at first glance. Predator-prey interactions
are of extreme importance because they corresponds to food chains which are the basis of all
ecosystems and, as we will show below, in our model they give rise to especially rich dynamics.
Further, for sake of simplicity from now on we only consider the motion on a two-dimensional
niche space, m = 2, with periodic boundary conditions.
Mathematically, predator-prey type interactions relate to a system with an antisymmetric

interaction matrix A, i.e., with elements aij = −aji. In the following we always assume that
the mutation rates λi are either identical for all species (or have been integrated already into
the interaction matrix aij → aijλi). One can easily show by taking the derivative of Eq. (4)
that the antisymmetric system yields

n∑
i=1

∂

∂xi
ẋi = 0. (8)

This identity holds for all choices of the functional forms of the interaction strength φ(dij).
Thus the system is conservative and preserves phase volume.
Suppose first that there are only three species N = 3. In this case the matrix A takes the

general form

A =


 0 a b
−a 0 c
−b −c 0


 (9)

and the equations of motion are given as

dx1
dt
= a

∂

∂x1
φ(|x2 − x1|) + b ∂

∂x1
φ(|x3 − x1|)

dx2
dt
= −a ∂

∂x2
φ(|x1 − x2|) + c ∂

∂x2
φ(|x3 − x2|)

dx3
dt
= −b ∂

∂x3
φ(|x1 − x3|)− c ∂

∂x3
φ(|x2 − x3|).

(10)
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Fig. 2. Basic three-species predator-prey configurations. (A) Three species chain, (B) feedforward
loop, (C) feedback loop. Species are indicated as circles, the arrows correspond to the directed species
interaction.

Further, the system preserves an integral of motion

E = aφ(d12)− bφ(d13) + cφ(d23). (11)

Straightforward calculation shows that

dE

dt
= 0 (12)

so that E(t) = const. This identity again can easily be verified by taking the derivative and
using Eq. (4).
The interaction matrix Eq. (9) allows for three different basic configurations (see Fig. 2).

Following the classification of network motifs, introduced in [19] we will refer these as three-
species chain, feedforward loop and feedback loop. In the last case all species are equivalent,
but in the first two configurations they are in a hierarchy. For brevity, we refer these species as
top, middle and bottom species (or simply species 1, 2 and 3), respectively.

4.1 Three-species chain

The three-species chain is the simplest configurations of a three species system (Fig. 2A). Given
equal interaction strength the matrix of interspecific connections is given by the matrix (9) with
a = c = 1 and b = 0

A =


 0 1 0
−1 0 1
0 −1 0


 . (13)

This system might for example represent a three-trophic food-chain. In the evolutionary process
the top species is chasing the middle species, which, in turn, tries to catch the position of the
bottom species of the chain. Despite the similarity to the two species case, with N = 3 the
dynamics is more rich and the behaviour of the system, depending on the initial conditions,
can be completely different (see Fig. 3).
Suppose, for example, a configuration in which the top and middle species are initially close

together but are largely separated from the bottom species in niche space. If the niche overlap
of the bottom species to the other two species is negligible then its fitness is not be affected by
their position. Thus, the bottom species (3) nearly does not move in niche space, while the top
and middle species form an almost isolated prey-predator pair (12), which moves in the fashion
of an arms race with a constant speed, similar to the situation in Fig. 1C. Due to the periodic
boundary conditions, this pair will eventually collide with the motionless bottom species. This
is shown in Fig. 3A. At the time of encounter the system undergoes a switching of the middle
species role from being persecuted by the top species to a chaser of the bottom species. The
reason is that due to the attraction from the bottom species the middle species receives an
additional acceleration and escapes from the top one. In this way a new arms race pair (23)
appears and the former pursuer, the top species (1), loses the connection and stops evolving.
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Fig. 3. Evolutionary dynamics in a three species chain. Depending on the initial condition the system
exhibits either (A) switching in a collision of a predator-prey pair with an isolated species or (B)
bounded, oscillatory motion. Solid line corresponds to the top species trajectory, dashed line to middle
and dotted line to bottom species. (C) Isolines of the first integral, Eq. (15), in the (d12, d23)-plane.

Sooner or later, due the periodic boundaries, the new evolving pair hits the stopped top species
and the reverse switching occurs in the similar manner, now, returning the middle species into
the pair with the top one. Thus, the middle species turns successively to either persecuted
or pursuer in different pairs. These collision and switching events resemble the scattering of
elementary particles, which is well known from nuclear physics. In the three species case only
two different scattering processes are possible (a pair of the top and bottom species (13) cannot
persist because they have no direct link), which we symbolically can denote as

12 + 3 → 23 + 1
23 + 1 → 12 + 3. (14)

In contrast, if initially all species are located close to each other, then the system dynamics
becomes very different. All species cannot leave some vicinity of each other and move together
along oscillatory trajectories around a central region in niche space (Fig. 3B). In this way
beautiful quasiperiodic patterns of evolutionary movement are generated (see Fig. 4A). Further
from Fig. 4B it becomes clear that the pairwise distances d12(t) and d23(t) are oscillating in
anti-phase. This means that the middle species alternately is located close to the top or to the
bottom species. It is therefore not possible to clearly distinguish between a bonded pair and
an isolated species. But most importantly, in contrast to the two-chain in Fig. 1C, in a three
chain the species do not evolve with equal speed. Instead, the coevolutionary motion of the
three chain rather resembles a walking on three legs.
The condition, which separates these two types of motion (switching or oscillation) can be

found from the conserved quantity (11). In view of the interaction matrix (13) the integral of
motion takes the form

E = exp

[
− d

2
12

2σ2

]
+ exp

[
− d

2
23

2σ2

]
. (15)

Apparently, each term in this sum is less than or equal to one. Hence, if E < 1 each of the
exponential terms must be in the range [0, E] and both distances are bounded from below,
d > −2σ2 lnE. In contrast, if E > 1 then each of the terms must be in the range [E − 1, 1]
and therefore both distances are bounded from above, d < −2σ2 ln(E − 1). Thus, the infinite
motion, when one or another species leaves the group, is possible only if E < 1, while in the
opposite case with E > 1 all species remain in a localised area. Fig. 3C shows the isolines, i.e.,
the lines with constant value of E, in the (d12, d23)-plane. Since E is conserved, the system state
must move along these one-dimensional lines. Switching orbits correspond to almost hyperbolic
curves and oscillatory states correspond to the closed curves around the origin in the central
area of the (d12, d23)-plane. We note that this behaviour is reminiscent to the two-particle
problem in a central force field in classical mechanics, where depending on the total energy of
the system both particles form a bounded state or exhibit scattering.
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Fig. 4. Dynamic outcome in the three-species chain in the oscillating regime E > 1 (upper panel)
and the switching regime E < 1 (lower panel). Plotted are typical trajectories of the top species (solid
line), the middle species (dashed lines) and bottom species (dotted lines) in niche space (left column)
and the time evolution of the distances d12(t) and d23(t) (right column). In (C) only the trajectories
of the top and bottom species are shown to demonstrate that these two species do not enter a central
circular region in niche space.

The fact that the motion takes place on one-dimensional curves at first glance would preclude
the possibility of complex dynamics. However, as shown in Fig. 4C, this is obviously not the
case. Clearly the evolutionary trajectories follow complicated curves in niche space. This can
be explained by the fact that the (d12, d23)-plane does not represent the full phase space but is
only a projection. Thus it is possible that the system exhibits complex and chaotic dynamics,
even though it moves on a one-dimensional manifold in the (d12, d23)-plane in Fig. 3. Clearly in
Fig. 4C one can see the sharp edges in the trajectories when species are scattered. Interestingly,
the trajectories of the top and bottom species never enter a central circular region in niche
space. We do not have an explanation for this observation. The time series of the distances
dij(t) in niche space show a very complicated dynamics (Fig. 4D) which suggests that the
system is chaotic.
This conjecture is confirmed from a calculation of the spectrum of Lyapunov exponents, χi.

In the three species chain we find that in the case of bounded dynamics E > 1 all 6 Lyapunov
exponents are zero, χi = 0. This confirms that in this case the dynamics is quasiperiodic. In
contrast if E < 1 only 4 of 6 exponents are zero while the remaining two exponents are have
finite value of opposite sign, χ1 = −χ2. This means that one Lyapunov exponent is larger
than zero and the system is chaotic. The reason for this is obvious. The scattering as shown in
Fig. 4A generates an instability and a sensible dependence on the initial conditions. Due to the
periodic boundary condition the species are reinjected into the central area. As a consequence of
this stretching (from scattering) and folding (from the periodic boundaries) chaotic dynamics
can arise. Our numerical simulations in a system with an antisymmetric interaction matrix,
A = −AT , show that the Lyapunov exponents always come in pairs with opposite signs, also
for different network topologies and a larger number of species.
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4.2 Three species feedforward loop

We now turn to the next three-species configuration, the feedforward loop (Fig. 2C). Given equal
interaction strength the interspecific connections are determined by the interaction matrix (9)
with a = b = c = 1

A =


 0 1 1
−1 0 1
−1 −1 0


 . (16)

In comparison with the three-chain, this configuration has an additional link from the top to the
bottom species. Thus, the top species is attracted by (and may bond to) both inferior species,
whereas the bottom one avoids both superiors.
The dynamic outcome again depends on the initial conditions. If the distance between the

top and bottom species is large enough, then the extra connection can be neglected and the
system demonstrates the same kind of evolutionary motion as the three species chain, namely
either alternately switching of the middle species or quasiperiodic motion (see Figs. 5A and
5B). However, if initially the top and bottom species form a close predator-prey pair (13), then
a new kind of dynamics appears. This is demonstrated in Fig. 5C which shows the species’
trajectories at the moment, when the top-bottom pair approaches the middle species. Now the
bottom species experiences double pressure and becomes squeezed in from both sides by its
superiors. As a result, in order to escape its opponents, it turns to the right or to the left
relative to its trajectory. The top species now experiences double attraction from both species
and in principle may bond to either the middle or to the bottom species. However, since the
bottom species is closer, the top species turns in the same direction and a switching of roles
does not happen. Instead the top-bottom pair is repelled from the middle species and changes
direction of motion.
In the three species feedforward loop the integral (11) takes the form of

E = exp

[
− d

2
12

2σ2

]
+ exp

[
− d

2
23

2σ2

]
− exp

[
− d

2
13

2σ2

]
. (17)

So the extra connection yields a new term with negative sign in the integral of motion. In
contrast to Fig. 3C this should be depicted in a three-dimensional parameter plane. However,
if we suppose a one-dimensional configuration, in which all three species are located one a
straight line in niche space, we can write d13 = d12 + d23 and the integral could approximately
be written in terms of d12 and d23

E = exp

[
− d

2
12

2σ2

]
+ exp

[
− d

2
23

2σ2

]
− exp

[
− (d12 + d23)

2

2σ2

]
. (18)

In this form E depends only on two parameters and its isolines can be shown in a 2D plane
(Fig. 5D). We found numerically that this approximation gives a good representation of the
real dynamics. We can distinguish among the following dynamic regimes. First, the area of
oscillatory motion, characterised by E > 1, with small pairwise distances in the central area
in Fig. 5D. Note that this area is much smaller than the corresponding oscillatory area in the
three species chain (Fig. 3C). Second, the area of switching in the range 0 < E < 1, with nearly
hyperbolic isoclines similar to the corresponding picture in the three species chain. Finally, we
find two diagonal areas which are characterised by negative values of the integral of motion,
E < 0. In this regime the sum d12 + d23 = d13, i.e. the distance between the top and bottom
species, is much smaller than each value. This area corresponds to the repelling of the top-
bottom pair (13) by the middle species. Note, that the state with E ≈ 0 is located between
the last two. If initially E ≈ 0, then the species move apart from each other and interact just
slightly, even though they start quite close to each other.
To summarise, the feedforward loop exhibits very similar dynamics as the three species

chain. Large values of E lead to bounded states with quasiperiodic oscillations, whereas smaller
positive values of E give rise to switching. We observe the same transitions as in Eq. (14). Thus
even though, in principle, three predator-prey pair configurations are possible, switching just
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bottom species. (D) Isolines of the first integral, Eq. (15), in the (d12, d23)-plane.

leads to alternations between (12) and (23) pairs. The (13) however is associated with negative
values of E and results in a new scattering process of repelling by the middle species.

4.3 Three-species feedback loop

The last antisymmetric three-species configuration is the feedback loop, shown in Fig. 2C.
Assuming again equal interaction strength the interspecific connections are determined by the
interaction matrix (9) with a = c = 1 and b = −1, giving rise to the matrix

A =


 0 1 −1
−1 0 1
1 −1 0


 . (19)

In this configuration all species are equivalent, in that sense, that each of them can become a
pursuer or a pursued species. This lead to similar patterns as in the three species chain, but
with the main difference that now each of the species can change its role (see Figs. 6A and 6B).
If the species are initially closely located, then as before they oscillate in a quasiperiodic fashion
around one central point. Otherwise, if a predator-prey pair approaches an isolated species we
observe switching. In contrast to the possible scattering reaction in the three-species chain in
Eq. (14), the feedback loop gives rise to the following reactions

12 + 3→ 23 + 1
23 + 1→ 31 + 2 (20)

31 + 2→ 12 + 3.
Interestingly, only three of the possible number of six scattering reactions are realised in this
system. For example a 12 pair on collision with species 3 always forms a 23 pair and never
a 31 pair.
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In the three species feedback loop the integral (11) takes the following form

E = exp

[
− d

2
12

2σ2

]
+ exp

[
− d

2
23

2σ2

]
+ exp

[
− d

2
13

2σ2

]
. (21)

Now the conserved quantity E can take values in the range from 0 to 3. Fig. 6C depicts the
isolines of the feedback loop configuration, which correspond to a one dimensional configuration
d13 = d12 + d23 similar to Eq. (18). In this figure the diagonal area corresponds to the middle-
top pair. But now this area is not separated from the other areas of infinite motion, as it was
in the feedforward configuration.

4.4 N-species chain

As an extension of three chain let us consider a n-species chain, i.e., a predator-prey hierar-
chy of n species, as is shown in Fig. 7. Assuming again symmetric interaction strength, the
corresponding asymmetric interaction matrix is

A =




0 1 0 0 . . . 0
−1 0 1 0 . . . 0
0 −1 0 1 . . . 0
0 0 −1 0 . . . 0
. . . . . . . . . . . . . . . 1
0 0 0 0 −1 0


 . (22)

It is easy to verify, that the integral of motion E in this case takes the following form

E =

n−1∑
i=1

exp

[
−d

2
i i+1

2σ2

]
. (23)

Further we find that the number of zero Lyapunov exponents is always four, which corresponds
to the symmetries Eq. (8) and Eq. (11), while the remaining 2n − 4 exponents come in pairs
with opposite sign.
The resulting evolutionary dynamics in niche space are shown in (Fig. 8). In dependence of

the value of the conserved quantity E in Eq. (23), we can distinguish between n − 1 different
dynamic states of the system. If E < 1, then only one predator-prey pair can persist at one time
instance and we observe switching. If k < E < k + 1, where k is an integer number, then the
model always contains k predator-prey pairs, which exhibit complicated patterns of switching
(Fig. 8A). And finally, a large value of E > n− 1 means that all distances are sufficiently small
and all species moves in an intricate collective motion, which resembles a swarming pattern
(Figs. 8B and 8C).
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Fig. 7. Schematic representation of a n-chain.

We have found that the dynamics of such a swarm-like, dense collection of species depends
on the parity of the species number n. For example, a single species in the absence of others
(n = 1) does not evolve and always remains at the same position in niche space, whereas a
prey-predator pair (n = 2) moves uniformly and linearly, as shown in Fig. 1C. A chain of three
species (n = 3) again, if initially located close enough to each other, does not show a mean
net displacement and just rotates around a central area (Fig. 5), whereas a chain of 4-species
(n = 4) on average moves as a whole along one direction (not shown). We conjecture that
this alternating behaviour of the collective movement with the species number continues for
an arbitrary number of species of the chain (always given the proper initial positions). If a
chain consists of an even number of species (e.g, n = 2, 4, 6, . . .) its centre of mass shows a
directed movement and the chain as a whole moves in a linear and uniform way through Ω,
in a way that resembles the motion of a two species predator-prey pair. In contrast all chains
with an odd number of species (e.g, n = 1, 3, 5, 7, . . .) just oscillate around one central location
and statistically stay at the same region in Ω. While we do not have an hard evidence of this
observation, we have verified numerically that this dependence of the collective motion on the
parity of the chain is true for chains up to 20 species.
In the other case, for lower values of E if the species are not close enough initially, then

the minimum niche overlap among them is not achieved and the chain will not evolve in Ω
as a whole. Instead it decays into evolving sub-chains conformed by species that are close
enough. These sub-chains follow the same rules of motion as noted previously. For example, the
sub-chains may collide, with the usual result of species-switching ongoing with changes in the
direction of motion, much like it was discussed in detail in the 3 species example. Unfortunately
we cannot formulate a law (an analog of conservation of momentum), which would show the
direction of motion after collision.
This does not hold only for linear n-chain topologies, but for arbitrary antisymmetric

interaction matrices. Further (again without formal proof) we have observed the following rule
for species switching, when a fast evolving n-chain collides with an isolated species. Obviously,
species-switching can only happen if the initially isolated species has an interacting link with
the oncoming chain. However, we have found that this link must be such that it is lower in
level than the lowest species in the chain or higher in level than the top species in the chain.
In other words, the single interacting species must be lower or higher in hierarchy than the
lowest or highest species of in the coevolving chain, respectively. If this is the case, then the
swapping always takes place. For example, if an arms-racing pair meets an isolated species that
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Fig. 8. Evolutionary dynamics in a linear n-chain. (A) Dynamics is separated into several sub-clusters
which exhibit switching of pairs. (B) Swarming motion with a directed collective motion in a chain of
10 close species. (C) Swarming motion without net displacement in a chain of 9 close species.
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can be positioned in the lowest level of the chain, then the top species is out-raced and the
middle species bonds with the former isolated species by forming a predator-prey pair in which
the middle species is chasing the incoming new species. However, the evolutionary dynamics is
entirely different if the pair encounters a species that can be placed in the middle of the chain
hierarchy (the feedforward loop). In this case the switching does not occur and, on the contrary,
the incoming pair is repelled by the isolated species.

5 Discussion

In this article we have presented a simple conceptional model for the coevolutionary dynamics
of ecological interacting species. Similar to other recent studies [24,27] we propose that the
species evolve by changing their positions relative to the other species in a common niche space,
which might for example represent a hypercube of certain phenotypic traits or environmental
conditions to which the species are best adapted. Depending on the interaction type (e.g.,
mutualistic, competitive, . . . ) each species can have either positive or negative impact on the
fitness of its interacting partners. Our basic assumption is that the strength of the interaction
between two species, independently of the interaction type, will be determined by the species’
niche overlap, i.e. their pairwise distance in niche space. Thus, the main idea of our model
is to separate the contributions to the evolutionary fitness of a species into the product of a
time-independent community matrix, which determines the signs and the type of the species
interaction, and time-dependent distance functions which are responsible for the strength of
the interaction.
Using numerical simulations we have investigated the resulting evolutionary motion in a two-

dimensional niche space. We have explored in detail all antisymmetric three-species network
configuration as well as a range of linear n-chains, from a single pair up to 20 species. These
investigations revealed that the evolutionary dynamics increases in complexity and richness
with the number of species in the model. In the simplest case of only two interacting species
we observe a rather straightforward model outcome, where the motion takes place on a straight
line. If the community matrix is symmetric the system exhibits either a convergence/divergence
equilibrium, where two competitors move in opposite directions to avoid the harmful influence
of the other (character displacement), while two mutualists approach until they encounter in one
point. In contrast, in a system with an antisymmetric community matrix, e.g. a prey-predator
pair, both species show a linear and uniform movement in the same direction (coevolutionary
arms race).
More complicated dynamics appear if more species are present in the community. Here we

were interested in a system with an antisymmetric community matrix, where we have shown
that the flow of the species in phase space is conservative and preserves a conserved quan-
tity. Nevertheless the evolutionary dynamics is characterised by seemingly turbulent dynamics,
where the continuous adaptive changes in the evolutionary landscape drive the species into an
intricate collective swarming pattern. Despite this complexity, we were able to identify several
dynamical rules. First, we found that as a prerequisite for coevolution the species must be
sufficiently close in niche space, which means that a minimal niche overlap must exist. As a
consequence, depending on the initial conditions the system separates into an ensemble of quasi-
independent subsets of species which form more or less linear chains. Depending on the parity
of their species number these sub-chains either oscillate quasiperiodically in a localised domain
or evolve with near constant velocity in a preferred direction. Although it is widely accepted
that the evolutionary process in biology in general is not directed (for a profuse discussion see
[17]), the unexpected formation of such moving species-swarms in our model shows the emer-
gence of directed evolution. That is, the ‘evolutionary direction’ of the collective system arises
as an emergent property of the individual rules (e.g., uphill fitness climbing) and the topology
of the interactions. We note, though, that the evolutionary path of individual species in such
a moving chain is not uniform but is characterised by alternating or antiphase oscillations of
next-neighbour distances in the chain. Thus, our model predicts that the directed evolutionary
motion of n species does not resemble the uniform movement of a n-particle rigid body but
would be better described as ‘evolutionary walking’ similar to a n-legged millipede.
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Furthermore, when such sub-chains collide in their evolutionary motion, we observe chaotic
scattering or repelling with drastic changes in the direction of movement, ongoing with an
exchange (or switching) of individual species between sub-chains, reminiscent to the scattering
of elementary particles. Further, for a small number of species the evolutionary dynamics
exhibits a staring analogy to the central force problem in classical mechanics, where depending
on the total energy of the system the particles form a bounded state or exhibit scattering.
We want to stress that these evolutionary collision and scattering events are a non-trivial
result of our model and result in punctuated, drastic changes for an ongoing evolutionary arms
race within a subchain, which may either abruptly change its evolutionary direction, vanish
completely or form a new different race with selected species from the collision partner. As a
consequence any species in a coevolutionary arms race potentially can be ‘out-raced’ by the
influence of other interacting species.
Even when we are aware that the presented model is very simple and holds strong

assumptions, not least the fact that we do not include population densities, we believe it well
worth to be considered, given the non-trivial features it produces to the elaboration of more
realistic biological models and theory.
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Volkswagen Stiftung, DFG (SFB 555) and the Venezuelan foundation Fundayacucho.
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