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1. INTRODUCTION

Distributed active (excitable) media [1], unlike pas-
sive media, can transmit signals over large distances
without attenuation or distortion. Wave formation and
propagation in such media are described by reaction–
diffusion equations where kinetics and transport are
represented by nonlinear reaction terms and diffusion,
respectively [1–3]. The simplest one-dimensional reac-
tion–diffusion equation was originally analyzed in [4]
as applied to biological problems.

In this paper, we analyze one-dimensional two-com-
ponent activator–inhibitor systems of the form
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model reduces to a reaction–diffusion system with self-
diffusion. When 
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 0, we have a cross-diffusion sys-
tem. The present analysis is restricted to systems with
linear cross diffusion (
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Waves of various kinds can be observed in reaction–
diffusion systems: stationary spatial patterns, spa-
tiotemporal chaos, etc. In this paper, we describe one-
dimensional traveling waves with oscillatory profiles.
The one-component equation
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has oscillatory solutions if at least one of its singular
points is a focus. In this case, a nonmonotonic self-
similar solution is represented by an orbit emanating
from the focus. It may describe a rightward- or left-
ward-propagating wave, and the oscillatory profile
may be localized near its leading or trailing front,
accordingly [5].

In this paper, we use the FitzHugh–Nagumo model
of an excitable medium [6] in a form amenable to
exact analytical treatment [7] to show that oscillatory
traveling waves can develop in a two-component sys-
tem, with front corresponding to an orbit joining two
saddle points. In the model considered here, wave
solutions with oscillatory profiles describe traveling
waves (i.e., waves described by functions of a single
variable 

 

ξ

 

 = 

 

x

 

 – 

 

ct

 

, where 

 

c

 

 is wave velocity). Since the
oscillatory profile is stationary in the frame moving
with the wave, profile oscillation can be treated as a
particular case of spatiotemporal oscillation. Spa-
tiotemporal oscillatory solutions of general form were
obtained numerically in [14].

Traveling waves with nonoscillatory profiles have
been known and studied for a long time. For the piece-
wise linear FitzHugh–Nagumo model considered here,
nonoscillatory traveling-wave solutions were obtained
in [7] and oscillatory ones were found in [12]. This
paper continues this line of research and presents new
results obtained for a piecewise linear reaction–diffu-
sion system by taking into account cross diffusion.

2. TRAVELING WAVES
WITH OSCILLATORY PROFILE

In this section, we consider one-dimensional two-
component reaction–diffusion systems described by
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extended FitzHugh–Nagumo models with diffusing
activator and inhibitor.

 

2.1. Model without Cross Diffusion

 

When both components diffuse, an extended
FitzHugh–Nagumo model can be written as

(2)

where 

 

a

 

, 

 

b

 

, and 

 

ε

 

 are constant parameters. The first two
parameters determine the wave pattern: a front (hetero-
clinic orbit), a pulse (homoclinic orbit), or a periodic
pulse train. The parameter 

 

ε

 

 relates the time scales of
variation of the dependent variables.

Model (2) is extensively used as a basic one in mod-
ern chemical physics. Originally, it was proposed to
describe excitation and propagation in nerve. As
applied to chemical reaction dynamics, the variables 

 

u

 

and 

 

v

 

 represent activator and inhibitor concentrations,
respectively.

To obtain analytical solutions [8–10] to system (2),
the reaction term in the activator equation is generally
represented by the piecewise linear function

where 

 

u

 

0

 

 is a constant parameter and 

 

θ

 

(

 

u

 

) is the Heavi-
side step function [11]. We consider this model in the
one-dimensional case:

(3)

For 

 

D
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 = 

 

D

 

v

 

 = 1, exact traveling-wave solutions to this
system were found analytically in [12]. By changing to
the variable 

 

ξ

 

 = 

 

x

 

 – 

 

ct

 

, Eqs. (3) are rewritten as ordinary
differential equations. Since the reaction term in the
activator equation is a piecewise linear function, the
solutions to the system are the sums of exponential
terms matched at points of discontinuity. For certain
combinations of model parameters, these terms are
replaced by sines and cosines corresponding to oscilla-
tory profiles. Details can be found in [12].

As an example of traveling wave with oscillatory
profile, Fig. 1 shows the solution describing an activa-
tor front with negative velocity. Here, the profile oscil-
lation decays with increasing coordinate while the
wave shape itself remains invariant in time, in contrast
to the waves with profiles oscillating in space and time
obtained in [14].

We consider in some detail the equation for the front
velocity (in the case of 

 

α

 

 = 1) obtained by reducing the
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number of equations used in the matching procedure.
Using the expression for the excitation threshold,

(4)

where

(5)

we find that there exists a stationary pattern in a sym-
metric system (when u0 = 0).

The diagram relating the front velocity to the time-
scale ratio ε exhibits a pitchfork bifurcation known as
nonequilibrium Ising–Bloch bifurcation [13, 14]. The
curves of front velocity versus excitation threshold in
Fig. 2, predicted by (4) and (5), demonstrate that the
nonequilibrium Ising–Bloch bifurcation is between
one-to-one (Fig. 2c) and many-to-one (Fig. 2a) corre-
spondence between c and u0. In Fig. 2a, the upper and
lower branches of the many-valued curve, which corre-
spond to stable solutions (two Bloch fronts propagating
in opposite directions), meet the middle branch, which
corresponds to an unstable solution (Ising front), at cer-
tain critical values of the excitation threshold. The two
fronts with positive velocities described in [15] corre-
spond to the upper branch and part of the middle one in
the diagrams shown here. A complete scenario of the
nonequilibrium Ising–Bloch bifurcation was presented
in [14] for a cubic FitzHugh–Nagumo model.

As the time-scale ratio ε increases, the curve of a
many-valued function degenerates into the curve repre-
senting a one-valued one (Fig. 2c): the Bloch fronts dis-
appear, and the Ising front becomes stable. The profiles
of the Ising and Bloch fronts may oscillate or not,
depending on the value of ε. Oscillatory profiles corre-

u0
c
4
--- 1

1 γ 2/ε–
------------------ 1

σρ
------- σ γ 2

ε
-----ρ–

γ
ε
-- σ ρ–( )– ,=

ρ c2/4 ε 1+( )/2 ε 1–( )2/4 ε–+ + ,=

σ c2/4 ε 1+( )/2 ε 1–( )2/4 ε––+ ,=

γ ε 1–( )/2 ε 1–( )2/4 ε– ,+=

8

u

6
4
2
0

–2
–40 –20 0 20 40 60 80x

5

0

10

15

20

t

Fig. 1. Diagonal diffusion. Space-time diagram of evolution
of the activator front for ε = 0.05, α = 0.1, and u0 = 0.
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spond to  < ε < , where  = 3 ±  [12].
These oscillations are pronounced in the profiles of
traveling fronts and discernible in the tail of a traveling
wave. In the present model, similar behavior is exhib-
ited by pulse solutions. In the case of a periodic pulse
train, an oscillatory profile corresponds to an anoma-
lous dispersion relation between pulse velocity and
period.

2.2. Model with Cross Diffusion

Taking into account cross diffusion, we can con-
struct a variety of wave patterns. For example, given the
reaction scheme

A + Y  X, B + X  Y + D,

X + X  C, Y + P  E

(see [2] for details), we have the distributed model

Models of this kind can be used to describe various
wave patterns under minimal constraints on lumped
kinetics, the key requirement being that influx from
outside the system (here, supply of species A [2]) is suf-
ficiently large.

Cross diffusion is used in ecology to describe pred-
ator–prey systems with positive taxis1 of predators up
the gradient of the prey concentration (pursuit) and neg-
ative taxis of prey down the gradient of the predator
concentration (evasion) [3].

1  In biology, taxis is a directional response of an organism to a
stimulus [5], such as anemotaxis or rheotaxis stimulated by cur-
rents of air or water, respectively.
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Reaction–diffusion systems with linear cross diffu-
sion have the form

(6)

where the signs of hu, v are chosen to describe a pursuit–
evasion game in a predator–prey system. When taxis is
taken into account by introducing ∂x(u∂xv) and
∂x(v∂xu) terms, the reaction-diffusion system has soli-
ton-like solutions that pass through each other and
reflect from impermeable boundaries [20]. Following
[21], we retain only the cross-diffusion terms here.

Cross diffusion in the absence of self-diffusion
implies that the transport of one species is determined
by the diffusive flux of the other species. For example,
in the host–parasite model of population dynamics,
changes in the parasite population are caused by diffu-
sion of the host population [16]. Cross-diffusion sys-
tems have been analyzed in numerous studies [17–19].

The modified FitzHugh–Nagumo model with cross
diffusion examined here is

(7)

Exact analytical solutions to this system are easily
found when ε = 1. The general solution is written as
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Fig. 2. Diagonal diffusion. Wave velocity vs. excitation threshold for ε = 0.01 (a), 0.3 (b), and 1.0 (c).
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where An, Bn, u*, and v* are constants determined sep-
arately for u < u0 and u > u0. The constants Bn can be
expressed in terms of An (see below).

Substituting (8) into (7), we obtain the matrix equa-
tion

(9)

The corresponding characteristic equation,

(i2 = –1), has four roots:

(10)

where

(11)

are positive quantities. The front profile is described by
the solutions

(12)

where p± = z ± c/2 and the constants B are expressed as

(13)

with

The matching procedure involves five equations:
two equations for u and v, two for their derivatives, and
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point is u0. Since these five equations contain five
unknowns (A±, , and c), the front velocity c can be
determined. Its dependence on the excitation threshold
u0 is illustrated by Fig. 3. It is clear from the figure that
the velocity curve is qualitatively similar to that
obtained for the system with self-diffusion, but the
bifurcation point is different. Indeed, when ε = 1, we
have a many-valued curve for the cross-diffusion sys-
tem and a single-valued one in the case of self-diffusion
(cf. Fig. 2c). By analogy, we refer to the corresponding
fronts described by the cross-diffusion model as Ising
and Bloch ones.

Examples of fronts are depicted in Fig. 4. The Bloch
front has a nonzero velocity, and its profile exhibits pro-
nounced oscillations. The Ising front is stationary, and
its form is characteristic of fronts in inhibitor–activator
systems, except that the u and v profiles are reversed.
The traveling (Bloch) fronts depicted here have positive
velocities: the fronts shown in Fig. 4a move rightwards
and the pronounced oscillations are ahead of the wave,
as distinct from those in the system with diagonal dif-
fusion considered above.

Traveling waves of the types described here are
possible in systems with more equations. For exam-
ple, oscillatory fronts in a three-component reaction–
diffusion system with one activator and two inhibitors
(with diagonal diffusion) were examined in a recent
study [22].

3. CONCLUSIONS

We have shown that traveling waves developing in
the two-component system can have profile oscilla-
tions, in contrast to those in the one-component system.

A±*

1

0 0.2

c

0.4 u0–0.2–0.4

2

3

–1

–2

–3

Fig. 3. Cross diffusion. Wave velocity vs. excitation thresh-
old for ε = 1.
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This wave pattern can be interpreted as a quasi-oscilla-
tory one, since decay of the oscillations makes it radi-
cally different from the oscillatory one (periodic pulse
train). Nondecaying waves of the latter type in two-
dimensional systems are spiral or circular excitation
waves emitted by a point source.

When multiple patterns of this kind are generated,
spatiotemporal chaos develops in an excitable medium
[14]. This spiral-wave turbulence is known not to be
transient; i.e., it persists for an arbitrarily long time in
the absence of external disturbance [1]. The study of
such regimes is of great current interest because of

applications in arrhythmology. In particular, it was
recently found that chaos in most models of excitable
media can be suppressed by weak parametric or direct
forcing (see [1] and references therein). For more real-
istic systems, as those describing an excitable (e.g., car-
diac) tissue, it has been shown that spiral-wave turbu-
lence can be suppressed by applying a weak force to a
small region of the medium [23].

The onset of spatiotemporal chaos in FitzHugh–
Nagumo-type models is due to the front bifurcation
described in this paper: a change in a parameter of the
medium causes the front to change direction, and the
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Fig. 4. Cross diffusion. (a, c) Activator u(ξ) and inhibitor v(ξ) front profiles (solid and thin curves, respectively) and (b, d) corre-
sponding phase portraits; (a, b) traveling front with c = 2; (c, d) stationary front. The excitation threshold is held constant at u0 = 0.
Nullclines f(u, v) = 0 and g(u, v) = 0 are represented by dashed lines (b, d).
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spiral wave or circular excitation waves emitted by a
point source break up. Therefore, it is interesting to
examine the effect of profile oscillations on the behav-
ior of spiral or circular excitation waves involving
changes in front velocity.
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