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MODEL OF A SPATTIALLY INHOMOGENEOUS ONE-DIMENSIONAL
ACTIVE MEDIUM

K. A. Vasil’ev,! A. Yu. Loskutov,! S. D. Rybalko,' and D. N. Udin'

We investigate the dynamics of one-dimensional discrete models of a one-component active medium analyt-
ically. The models represent spatially inhomogeneous diffusively concatenated systems of one-dimensional
piecewise-continuous maps. The discontinuities (the defects) are interpreted as the differences in the pa-
rameters of the maps constituting the model. Two classes of defects are considered: spatially periodic
defects and localized defects. The area of regular dynamics in the space of the parameters is estimated
analytically. For the model with a periodic inhomogeneity, an exact analytic partition into domains with
regular and with chaotic types of behavior is found. Numerical results are obtained for the model with
a single defect. The possibility of the occurrence of each behavior type for the system as a whole is
investigated.

1. Introduction

The approximate representation of continuous media by their discrete analogues is a rather effective
research method. The conversion to the discrete form can be either purely spatial or both spatial and
temporal. In the spatial discretization, the initial system is approximated by a finite or countable set
of clements with a certain form of coupling between them. Every element represents a dynamic system
with a small number of variables. If, in addition, the dynamic system is determined by a map, i.e.,
by a transformation with discrete time, then the discretization is called spatial-temporal. The spatial-
temporal discrete models are called net or lattice models. Many problems in the nonlinear theory of
a continuous medium can be reduced to problems with discrete models. For example, some problems
in statistical physics can be effectively solved through the representation of the medium by its discrete
space—time approximation [1-4], excitable continuous systems are often described in terms of their discrete
analogues [4, 5], etc. (cf. [6-13] and the references therein). Moreover, any sort of numerical analysis of
continuous systems is always connected with discrete space—time systems because any numerical procedure
is based on a finite difference scheme.

There is a variety of space-time lattice forms. The most common are the lattices where every element
somehow interacts only with its nearest neighbors (see, e.g., [8-13] and the references therein). Another
form of coupling is global interaction in which every pair of elements is connected [14--16]. In the case of a
local interaction, diffusion coupling between the elements is normally considered [1, 2, 4, 8-13] (see also the
references therein). This form of coupling is mainly used to model the phenomena related to space—time
chaos, structure generation, and self-organization.

If the value of a governing parameter of the family of maps constituting a lattice is constant for the
entire lattice, the lattice is called homogeneous. Varying this parameter and the value of the diffusion (or the
coupling constant), we can investigate the phase diagram, the possible phase transitions, and the related
space—time patterns. If the parameters of the maps are different, then the net is inhomogeneous. Such
nets are much more difficult to study. Almost all previous works dedicated to diffusively interacting maps
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were restricted to a study (usually a numerical study) of homogeneous nets. From the physical standpoint,
however, it is obvious that the space homogeneity (or, in this case, the identity of all elements) is a strong
idealization adopted to simplify the analysis. It is therefore interesting to investigate the qualitative changes
in the system dynamics related to the inhomogeneity. The latter can be of different types ranging from
individual defects to a periodic inhomogeneity of the entire space.

The present work is focused on spatially inhomogeneous one-dimensional systems (i.e., chains) of
diffusively connected piecewise-linear one-dimensional maps. The term map here refers to a transformation
of an interval I into itself: T,: I — I, where I = [«, 8] € R!, 2 — G(z,a), x € I, G(z,a) is a function, and
a is a parameter (or, generally, a set of parameters). In terms of the iterations k, this can be written as
a(k +1) = G(z(k),a), z € I. The inhomogeneities are given as maps with different parameters. The maps
themselves (i.e., the functions ) are chosen such that the systems represent models of a one-component
active medium [17]. Based on an exact calculation of the Lyapunov indices, we investigate different regimes
in the behavior of the system with a periodic inhomogeneity and of the system with a single defect. The
phase space structure of these systems is also described.

2. Models of spatially inhomogeneous active media

The main result in this section is the description of the dynamics of two types of inhomogeneous active
media. We consider a model representing a one-dimensional annular lattice of concatenated maps with a
periodic inhomogeneity and a chain with a single defect. ‘

2.1. Homogeneous medium. We examine a system of N diffusively concatenated maps of the form
Tn(k + 1) = G(zn(k), @, 7) + e(2ns1(k) — 220 (k) + zn-1(k)) (1)

with the periodic boundary conditions z,4n(k) = z,(k), where n = 1,2,..., N is the discrete space
coordinate, £k = 0,1,2,... is the discrete time coordinate, ¢ > 0 is the diffusion coefficient (which we
assume to be constant), and o > 0 and -y are parameters. For the function G, we set

(1 —2a)x — 1, x<1/2,

2
(1-20)x—~+2a, x>1/2. @)

Glx,o,y) =z +aF(z) —y= {

This form of the function G(z, «,~) was chosen because system of maps (1) with elements of form (2) is a
discrete realization of the basic model of a one-component one-dimensional active medium described by an
equation of the Kolmogorov-Petrovskii-Piskunov form:

U (x,t) D32U(9:, t)
ot o2

+B(U).

As is known, this equation is commonly met in problems in biophysics, combustion theory, chemical kinetics
(e.g., the description of the Belousov—Zhabotinskii reaction), solid state electronics, etc. (see, e.g., [18-21]).

It is easy to see that G(x,a,~) is a piecewise-linear function whose graph has a constant slope equal
to (1 — 2a). Depending on the parameter o, the map generated by the function G, i.e., z — G(z,q,7),
can manifest qualitatively different types of behavior. For 0 < «« < 1 (Fig. 1a), its behavior is regular, and
depending on 7, the map can have one or two stable points (the points A and B) attracting almost all
points of the phase space. For a.> 1, the absolute value of the slope of the graph of the map exceeds unity
(see Fig. 1b), which corresponds to an exponential divergence of neighboring trajectories. In this case, if
the motion of a phase point is finite, the dynamics is chaotic.

Homogeneous model (1) composed of concatenated functions of form (2) was described in detail in [17].
We recall the principal results of this study. System (1), (2) can be interpreted as an N-dimensional
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Fig. 1. The map x — G(x,,7): (a) for « =0.25 and v = —0.2; (b) for & = 125 and v = —1.

piecewise-linear map f: RN — RY. Because G(z,q,7) is a piecewise-linear function with a constant
derivative, the differential D,y of the map f is a matrix with constant coefficients. It is therefore easy
to find the Lyapunov indices A; of this map. If p, are the eigenvalues of Dy, then A\, = log|ps|. If any
eigenvalue p, lies outside the unit circle on the complex plane, then all trajectories of the map f are unstable.
Otherwise, the model dynamics is regular. The problem of the system behavior is therefore connected
with investigating the location of the roots p,. To calculate p,, we express the characteristic polynomial
for the N-dimensional map differential in terms of determinants of three-diagonal matrices with different
dimensions. We can obtain recursive relations for these matrices. Interpreting these relations as finite-
difference equations with given initial conditions, it is possible to find the solutions, which are proportional
to the Chebyshev polynomials of a linear function of the eigenvalues of Dy. It can be shown that because of
the properties of Chebyshev polynomials, the characteristic polynomial reduces to a quadratic third-order
polynomial of the known function p,. Calculating the values of p, and analyzing their locations on the
complex plane lead to a partition of the parameter space of map system (1), (2) into two domains (Fig. 2):

1. Domain Dy is determined by parameters o and ¢ such that the absolute values of all eigenvalues
of the map f differential are smaller than unity, and the model dynamics is therefore regular.

2. Domain Ds is determined through the condition that the set of eigenvalues p, contains at least
one root satisfying the inequality |ps| > 1. In this case, generally, the dynamics can be infinite.
However, if the motion is finite, the behavior of system (1), (2) is said to be chaotic [9-11].

System (1), (2) is spatially homogeneous in the sense that all its elements (i.e., the maps z — G(z, o, 7))
arc equal. However, our goal is to investigate the spatially inhomogeneous diffusive model. The inhomo-
geneity can be related either to different map types acting in different space points or (if the maps for all
the elements are equal) to different map parameters.

In this analytic study, we restrict ourselves to the latter case, i.e., we assume that every element is a
piecewise-linear map x; — G(24, @4, y) (see Eq. (2)) but, in contrast to the homogeneous case, there are
two clement types distinguished by the values of the parameters «y; of the function G(;, o, v).2 We let
the parameter « correspond to one type of the elements and the parameter /3 correspond to the other type.

2Generally, the elements can also differ by the value of v. However, it is shown below that the dynamics of both the
homogeneous and the inhomogeneous systems does not depend on ~.
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Fig. 2. Parameter space of a homogeneous annular chain of diffusively concatenated maps (1), (2).

As in homogeneous case (1), we take the chain in the form of a ring, i.e., Zp4n(k) = 2 (k).
We investigate two qualitatively different cases in detail: the model with spatially periodic defects and
the model with a single defect.

2.2. Annular model with a spatially periodic inhomogeneity. The term spatially periodic
inhomogeneity refers to the case where the values of the parameter of the function G change from one
element to another periodically, i.e., the parameters vary as a, 8, ., 8, ... . The dynamics of a chain with
such an inhomogeneity can be fully described analytically.

We consider a concatenated one-dimensional net of the form

G(zn(k), a,7) + (@ns1(k) — 225 (k) + Tn—1(k)) for odd n,

'T"(k + 1) - { G(Tn(k)v /6'17) + 5($n+1(k) - 23‘71(1{:) + x7l—1(k)) for even n (3)

where 2,4 n(k) = zn(k), the function G is still given by relation (2), and N is even (otherwise chain (3)
cannot be converted to the form of a ring). We seek the values of the parameters «, 3, and ¢ corresponding
to qualitatively different regimes of behavior of periodically inhomogeneous annular model (3), (2). We
calculate the Lyapunov indices of system (3), (2) using the technique developed in [17].

Taking the boundary conditions into account, we express the differential of the N-dimensional map
generated by a system of form (3) as '

1—-2¢—2« 5 0 v €
€ 1-2¢e-20 € e 0
D;=Qn = 0 £ 1—-2e—2a --- 0
€ 0 0 - 1228
To find the eigenvalues ps, s = 1,2,..., N, of the matrix QQ, we calculate the determinant
2218 e 0 0 €
5 220¢ € 0 0
0 5 2216 € --- 0
det(@n —pIn) = . : R N
0 0 o 0 --- €
e 0 0 0 --- 2z
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where 27 and 23 are determined from the relations 1 — 2e — 2a0 — p = 2212 and 1 — 26 — 283 — p = 2z9¢.

Expanding the determinant with respect to the first row, we obtain

det(QN — pIN) =2z1eBy_1 — SQBN__Q —2eN 52§N—27

where
2me ¢ 0 0 220 € 0 0
e 2me ¢ : 0 € 2z € 0
By=| 0 € 2296 - 0 |, By = 0 € 2z0¢ 0
0 0 0 --- 2206 0 0 0 -ee o 221E

It is easy to see that BN(zl, z2) can be obtained from By(z1, z2) through the substitution z; < 2z, and we
therefore use a recursive relation to find By (z1, 22). Expanding By with respect to the first row, we obtain

Be — 2z1eBy_1 — 2Bn_o for even N,
N7\ 220¢By_1 — 2By for odd N.

It is now easy to express the odd-order determinants through the even-order determinants:

Bony1 =
We then obtain a recursive relation for the even-order determinants:
Ban = £*(42122 — 2)Ban-—2 — ' Bon 4.
Relation (5) can be interpreted as a difference equation with the initial conditions
B() = 1, Bg = 52(43122 — 1)

Further, solving system (5), (6) and taking Eq. (4) into account, we obtain

eNUN(2) for even N,

Bn(z1,20) = =z
w(z1, 22) N JZ2Un(z)  forodd N,
21

where Un(z) is a Chebyshev polynomial of the second kind. In turn, the relations for B ~N(z1, z2) have the

form
i NUN(2) for even N,
Bn(z1,22) = [z
~N(z1, 22) N 2 Un(z) for odd N.
22

Using the relations for By_1, By_2, and EN_;;, we find
det(Qn ~ pIn) = 2V (2Un-1(2) — Un—2(z) — 1).
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It is now easy to find the eigenvalues of the differential of map (3), (2). It follows from Eq. (7) that
ZUN‘l(Z) "UN_’_)(Z) —1=0 (8)

or Tw(2z) —1 = 0, where we use the relation between the second-kind Chebyshev polynomials Un(z) and
the first-kind Chebyshev polynomials Tn(z). Because

Tn(z) = e
(where 2% = z29), if we set t = z — v/22 — 1, we obtain

1/ y 1
— (¢ —)]-1=0
2< +tN) 1

or (tV —1)? = 0 from Eq. (8). Consequently, t, = ¢??™*/N and z, = cos(27s/N), s = 1,2,..., N. Recalling
that 221€ - 229 = 422¢2, we obtain the simple equation

2
(1 — 2 —2a — p)(1 — 25 — 28 — p) = 4¢? cos® (—]\Z/,r—a) .

Solving this equation with respect to p, we find the set of eigenvalues of the differential of map (3}, (2):

. 2
pig:1—25—04—[3j:,\/(a—6)2+4520052 (%s), (9)

where s = 1,2,..., N/2. The dynamics of system (3), (2) is fully regular if all values of p, lie inside the
unit circle on the complex plane. All p3 , are real; therefore, the regular-dynamics condition is satisfied if

2 +a+ 3> V42 + (o — 8)?,

2
a+ 3 5 a—B\°
5 1/e _ < 1.
+ 2 + +< 2 )

Because ¢, o, 3 >0, the first inequality of this system is always true. In turn, the condition € + {a+ 3)/2 +
vVe2+ (a— 8)%/4 > 1 is satisfied in the parameter space domain where A; > 0.

The boundary between the domains of qualitatively different (regular or chaotic) dynamics is a surface
in the three-dimensional space of the parameters («, 3,£) given by the expression ‘ :

s+“—;r—ﬁ+\/52+(a—;@3:1. (10)

As an illustration, we consider the sections of the phase space of system (3), (2) by planes 6 = const, where
J = B — « is the inhomogeneity parameter (Fig. 3). Let D; be the regular-dynamics domain, and let Dy
be the domain where A; > 0. The boundary between these two domains is determined by an equation
that follows from Eq. (10). For comparison, the boundaries separating the domains Dy and D> for the
homogeneous {6 = 0) system of concatenated maps (see Fig. 2) are shown in Fig. 3a,b (dashed lines). As
follows from Fig. 2, the model with § > 1 exhibits a chaotic dynamics for any values of ¢ and a. For § < 1.
there exists a domain D; where the dynamics is regular. In a certain range of values of the parameters
0 < 0 < 1, this domain is a subarea of the regular behavior domain of the homogeneous model. For

1291



|
(1-9)/(2=0)|_ | 0.5 |
0571~ 2 ~ D, (1-38)/(2—0)| ™ —
~
Dl\ D1 DZ\ ~
0 5 1 a 0 1-6 1 “

Fig. 3. Sections of the parameter space for model (2), (3) by the planes § = const: (a) for —1 < d < 0
(b)y for 0 <9 < 1.

—1 < 4 < 0, there exist values of the parameters ¢ and « such that the dynamics of the inhomogeneous
model is regular, while the dynamics of the homogeneous one is chaotic. The restriction o > —J corresponds
to the condition 3 > 0. For § < —1, the domain D; vanishes, and model (3), (2) exhibits only chaotic
properties for all possible values of ¢ and «. As directly follows from Fig. 3, there are two qualitatively
different possibilities: either the parameter o belongs to the regularity domain, the parameter 3 belongs
to the chaos domain with A; > 0, and the general dynamics is regular or the dynamics of the periodically
inhomogeneous medel can be chaotic. The realization of one of these two possibilities depends on the value
of the diffusion parameter <.

2.3. Annular model with a single defect. We now consider another interesting spatially inhomo-
geneous model of diffusively concatenated maps, the system with a single defect. In this case, the parameter
3 (see formula (2)) corresponds to one of the N elements of the system, while the parameter « corresponds
to the remaining N—1 elements. Without loss of generality, we can set this single different element to
correspond to n = 1. Therefore, we examine a model of the form

G(zn(k), @, 7) + ¢ (zn-1(k) — 22, (k) + Tny1(k)), n=2,3,...,N,

G(x1(k), B,7) + e(xn (k) — 221 (k) + z2(k)). n =1, (11)

Zn(k + 1) :{

where z,4 v = T,(k). As above, let the function G(z, «,v) be given by expression (2). We determine the
differential of the corresponding map for system (11), (2):

1—2¢-283 € 0 €
€ 1 -2 —2a 5 0
D;=Qn = 0 € 1—-2¢-2a 0 (12)
£ 0 0 e 1 =2 -2«

If the technique used above to find the Lyapunov indices (see Secs. 2.1 and 2.2 and also [17]) is applied to
model (11), (2), then the characteristic equation for map differential (12) leads to the necessity to find the
roots of a polynomial of order 2N+2. This can only be done numerically. We therefore use a somewhat
different approach for this model.

We estimate the regular-dynamics domain of system (11), (2) using the estimate for the eigenvalues of
matrix (12) based on the Guershgorin theorem [22]. According to this theorem, all eigenvalues of a matrix
A = {a;j }nxn belong to a union of circles on the complex plane:

n
ps € U{ze(C:Hz—amSR;}» s=1,2,....N,

i=1
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Fig. 4. Estimate of the regular-dynamics domain for inhomogeneous chains with two element types
in the parameter space («, 3,¢).

where R} is either the row quasi-norm of the matrix A, R} =37, i laij|, or the columnar quasi-norm of

the matrix A, R} = Y7 | £ |@ij|- Because map differential (12) is a real symmetric matrix, the row and
the columnar quasi-norms coincide, and the eigenvalues of Dy are real. Therefore, the Guershgorin circles
are transformed into intervals on the real axis:

k13
ps € U{zeR: [z —ay| <R}, s$=1,2,...,N.
i=1
Because ¢ > 0, it is easy to find from expression (12) that

n

Ry =" lag| = el + || = 2¢.
=1
i

We note that R, does not depend on ¢ and there are only two different types of diagonal elements in the
map differential D; (see Eq. (12)); therefore, the eigenvalues of Dy belong to the union of two intervals

{zeR:[1-2e-2a—z2[ <2} U{z€R: |1 —2: - 28— 2| < 2¢}.
Because «, 3,¢ > 0, we then obtain an upper estimate for the absolute values of the eigenvalues of Dy:

| |<{ﬂ+25, o < 3,
Pl = o+ 2¢, a> 0.

Therefore, the domain f)l in the parameter space («, 3, ¢) satisfving the conditions

~ +2: <1 for a < 3,
l)ll { B N (13)
a+2:<1 for v > 3,
corresponds to a regular dynamics of inhomogeneous model (11), (2), and the domain
~ 342> 1 for a < 3,
Dy : { - ‘ (14)
a+2e>1 for v > 3,

corresponds to positive A;. The domains Dy and D5 are shown in Fig. 4. The domain D, is a lower estimate
for the region of regular dynamics, because it was derived using the upper estimate for the eigenvalues of
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Fig. 5. Approximate estimate and exact result for the regular-dvnamics domain of the model with
periodic inhomogeneity: (a) for —1 < 4 < 0; (b) for 0 < § < 1.

the map differential. Any point of the parameter space belonging to Dy corresponds to a regular dynamics
of the model, while any point belonging to Do corresponds to either regular or (if the motion is finite)
chaotic dynamics.

The derived estimate is valid not only for the single-defect model discussed but also for the entire
class of annular systems of maps with a diffusive concatenation of form (1) characterized by the presence
of two types of the elements (with different parameters «; of the function G(z;,a;,v)). In this case, the
number of elements of each type and their relative positions do not matter. Indeed, the quasi-norms of
the map differentials for all such systems coincide, and the centers of two possible intervals containing the
eigenvalues of D (according to the Guershgorin theorem) are common as well.

By a corollary of the Guershgorin theorem, if the two intervals where the estimate of p, is made do
not intersect, then there is a “clustering” of the map differential cigenvalues. That is, ¢ cigenvalues ps.,
s =1,2,...,q, lie within one interval, and N—q eigenvalues ps, s = q+ 1,9+ 2,..., N, lie within the other
interval. Here, ¢ is the number of elements with the parameter «, and N —q is the number of elements .
with the parameter 3. However, taking this property into account does not improve the estimate of the
regular-dynamics domain.

We compare estimate (13) with the exact result obtained above for the annular model with a spatially
periodic inhomogeneity (see Sec. 2.2). It is clear that the model belongs to the class for which this estimate
remains valid. For elucidation, we construct the sections § = const of the domain D; corresponding to
a regular dynamics of system (3), (2) and also those for the estimate D; (Fig. 5). It can be seen in the
figure that estimate (13) for the regular-dynamics domain approximates the true behavior of the model
rather well. However, the estimate fails to reflect that for —1 < § < 0, the regular-dynamics domain for
system (3), (2) is broader than the regular-dynamics domain of the spatially homogeneous system.

We now return to system of maps (11), (2) whose spatial inhomogeneity is connected with the pres-
ence of only one defect. We find the eigenvalues of map differential (12) numerically. In this case, the
characteristic polynomial can be written as

2ze+2(a— ) ¢ 0 5

€ 2z ¢ 0

det(Qn — pIy) = 0 € 2z 0
€ 0 0 2ze

where 2ze = 1 — 2¢ — 200 — p. Expanding det(Qn — pIn) with respect to the first row, we obtain
det(Qn — pIn) = [2z¢ + 2(a — B)] Bn—1 — 2 By_p — 2(— 1)<V, (15)
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Fig. 6. Characteristic form of the sections & = const of the parameter space for a chain of N=20
elements with a single defect: (a) for § = —0.3; (b) for 6 = 0.3.

where
2z € 0 0
s 2ze ¢ 0
By = 0 e 2ze 0
0 0 0 - 2z

As above, we use the expansion of By with respect to the first row to obtain the recursive relation By =
2zeBn_1 — €2Bpn 2. This relation can be interpreted as a difference equation with the initial conditions
Bi = 2z¢, By = £%(42% — 1), whose solution is of the form

By = <NUn(2). (16)
where Uy (z) is a second-kind Chebyshev polynomial. Taking Eq. (16) and the expression for Un(z),

N 5 N-+1
Uolsy— ETVET) R S A Y L
wiz) = 2V -1 ST 1t-t

where t = z — V22 — 1, into account, we obtain

A T A e AT S
det(@n = ply) = 27 [ AR ( c ) 1) N1 (_1)N]

from Eq. (15). Hence, the characteristic equation for map differential (12) can be expressed as

P2N+2 o (a - ﬁ) PNFT 2N )2 L o )N g2 g (a : ﬁ) 10 (17)

<

It is now easy to calculate ps by finding the roots of Eq. (17) numerically. Comparing the p, values to
unity for all possible values of the parameters o, 3, and ¢, it is straightforward to determine the domains
D1 and D2 of qualitatively different dynamics for an annular chain of diffusively connected maps with a
single defect. The sections of these domains by the planes § = const (where § = 3 — a) are shown in
Fig. 6. Estimate (13) for the regular-dynamics domain is shown by the dashed line. In this case as it was
for the model with a periodic inhomogeneity, this domain (for positive §) is broader than that predicted
by the estimate. However, in contrast to the periodic inhomogeneity, the estimate for ¢ < 0 fully coincides
with the numerical result and also with the result for a homogeneous chain. Therefore, if the parameter
corresponding to one of the system elements is smaller than those corresponding to all other elements, then
this defect has no influence on the dynamics of the entire ensemble. However, if the anomalous paramneter
value is larger than the normal value, then the regular dynamics domain of the model is narrower than that
in the homogeneous case.
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3. Conclusion

We investigated the behavior of systems of diffusively concatenated one-dimensional maps that model
a one-dimensional active medium with a spatial inhomogeneity. Different types of inhomogeneity were
examined. For all systems whose spatial inhomogeneity is related to the presence of two types of elements
that differ by a parameter value, a lower estimate for the regular ensemble dynamics domain in the space
of the parameters was derived analytically. This estimate was based on the localization of the differential
eigenvalues of the map. Numerical and exact analytic results were obtained for two specific models of this
class. :
The results for the three examined cases, i.e., estimate (13) of the regular-dynamics domain for the
class of models with two types of elements, the exact results for the system with periodic inhomogeneity
(Fig. 3), and the exact results for the single-defect model (Fig. 6), reveal that there exist two general types of
system dynamics. For the first type, the parameter of one sort of elements belongs to the regular-dynamics
domain while the parameter of the other sort belongs to the unstable-behavior domain, and the general
dynamics remains regular. For the second type, in contrast, the model dynamics can be unstable or, in the
case of finite motion, chaotic. The realization of either behavior type depends on the diffusion parameter
¢ and is possible only if the parameter is small. Obviously, the general dynamics of all chains belonging to
the class of our interest cannot be regular for sufficiently large values of <.

As far as we know, this work is the first attempt to describe the dynamics of inhomogeneous systems
of concatenated maps analytically. The present knowledge is far from exhaustive even for the homogeneous
discrete models of continuous media. Much is yet to be elucidated, many qualitative and quantitative
questions remain open. Moreover, this work did not address the problems of possible stationary states of
the model in the regularity domain, of wave motions along the chain and their dependence on the defects,
of the dynamics in the case of time-dependent parameters, etc. Some of these questions will be answered
in the near future [23, 24].
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