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M O D E L  OF A S P A T I A L L Y  I N H O M O G E N E O U S  O N E - D I M E N S I O N A L  

A C T I V E  M E D I U M  

K .  A .  V a s i l ' e v ,  ~ A .  Y u .  L o s k u t o v ,  1 S.  D .  R y b a l k o ,  1 a n d  D .  N .  U d i n  1 

We investigate the dynamics of  one-dimensional discrete models of a one-component active medium analyt- 
icalh~. The models represent spatially inhomogeneous diffusively concatenated systems of one-dimensional 
piecewise-continuous maps. The discontinuities (the defects) are interpreted as the differences in the pa- 
rameters of the maps constituting the model. Two classes of  defects are considered: spatially periodic 
defects and localized defects. The area of regular dynamics in the space of the parameters is estimated 
analytically. For the model with a periodic inhomogeneity, an exact analytic partition into domains with 
regular and with chaotic types o f  behavior is found. Numerical results are obtained for the model with 
a single defect. The possibility of  the occunence of each behavior type for the svstem as a whole is 
investigated. 

1. I n t r o d u c t i o n  

Tile approximate representat ion of continuous media by their discrete analogues is a rather  effe.ctive 
research method. The  conversion to tile discrete form call be either purely spatial or both spatial and 
temporal .  In the spatial discretization, the initial sys tem is approximated by a finite or countable set 
of elements with a certain forin of  coupling between them.  Every elelnent represents a dynamic system 
with a small number of variables. If, in addition, the dynamic system is deternfined by a map, i.e., 
by a transformation with discrete t ime,  then the discretization is called spatial temporal. The spatial  
teinporal  discrete models are called ne t  or lattice models. Many problems in the nonlinear theory of 
a continuous medium (:an be reduced to problems with discrete models. For example, some problems 
in statistical physics can be effectively solved through the representation of the medium by its discrete 
space tinm approximation [1-4], exci table  continuous sys tems are often described in terms of their discrete 
analogues [4, 5], etc. (cf. [6 13] and  the  references therein).  Moreover, any sort of numerical analysis of 
continuous systems is always connected with discrete space t ime systems because any nunmrical procedure 
is based on a finite difference scheme. 

There is a variety of space- t ime  lat t ice forms. The most  common are tile lattices where every element 
somehow interacts only with its neares t  neighbors (see, e.g., [8-13] and the references therein). Another 
form of coupling is global interaction in which every pair of elements is connected [14--16]. In the ease of a 
local interaction, diffusion coupling be tween the elements is normally considered [1, 2, 4, 8-13] (see also the 
references therein). This form of coupl ing is mainly used to model the phenomena related to space t ime 
chaos, structure generation, and self-organization. 

If the value of a governing p a r a m e t e r  of the family of maps  constituting a lattice is constant for tile 
entire lattk:e, tile lattice is called homogeneous .  Varying this paranmter  and the vahle of the diffusion (or the 
coupling constant), we can invest igate the phase diagram, the possible phase transitions, and tile related 
space time patterns. If the p a r a m e t e r s  of the maps are different, then tile net is inhomogeneous. Such 
nets are nmch more ditficult to study. Ahnost  all previous works dedicated to diffusively interacting maps 
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were restricted to a s tudy (usually a numerical study) of homogeneous nets. From the physical s tandpoint ,  
however, it is obvious that  tile space homogeneity (or, ill this case, tile identity of all elements) is a s trong 
idealization adopted  to simplify the analysis. It is therefore interesting to investigate tile qualitative changes 
in tile system dynamics  related to the inhomogeneity. The lat ter  Call be of different types ranging f rom 
individual defects to a periodic intlomogeneity of tile entire space. 

The present work is focused oil spatially inhomogeneous one-dimensional systems (i.e., chains) of 
diffusively connected piecewise-linear one-dilnensional mat)s. Tile t e rm map  here refers to a t ransformat ion 
of an interval I into itself: To: I ---, I ,  where I = [a, [3] E ]R l, x H G(x,  a), x E I, G(x,  a). is a function, and 
a is a parameter  (or, generally, a set of parameters).  In terms of the iterations k, this call be wri t ten as 
x(k  + 1) = G(x (k ) ,  a),  x E I. The inhomogeneities are given as maps  with different parameters.  Tile nlaps 
themselves (i.e., the  functions G) are chosen such that  the systems represent models of a (me-component 
active medium [17]. Based on all exact calculation of the Lyapunov indices, we investigate different regimes 
in the behavior of the system with a periodic inhomogeneity and of the system with a single defect. The  
phase space s t ructure  of these systems is also described. 

2. Models  of  spatial ly inhomogeneous  active media  

The main result  in this section is tile description of the dynamics of two types of inhomogeneous active 
media. Vr consider a model representing a one-dimensional anmflar lattice of concatenated maps with a 
periodic inhomogeneity and a chain with a single defect. 

2.1. H o m o g e n e o u s  m e d i u m .  We examine a system of N diffusively concatenated maps of the fornl 

xn(k  + 1) = G(xn(k ) ,  (~, 7) + s (k) - 2Xn(k ) -}- Xn_l (k) )  (1) 

with the periodic boundary  conditions Xn+N(k) =-- xn(k) ,  where n = 1 , 2 , . . . , N  is the discrete space 
coordinate, k = 0, 1 , 2 , . . .  is the discrete time coordinate, c > 0 is the diffusion coefficient (which we 
assume to be constant) ,  and a > 0 and 7 are parameters.  For the fmlction G, we set 

(1 - 2c~)x - 7 ,  
G ( x , a , 7 ) = x + a F ( x ) - 7 =  (1 2a)x  7 + 2 a ,  

x < 1/2, 
(2) 

x > 1/2. 

This  form of the flmction G(x, a,  7) was chosen because system of maps (1) with elements of form (2) is a 
discrete realization of the basic model of a one-component one-dimensional active medimn described by an 
equation of the Kohnogorov Petrovskii  Piskunov form: 

OU(x, t) _ D i:)2U(x, t) 
Ot Oz 2 + ~(U) .  

As is known, this equat ion is commonly met in problems ill biophysics, combustion theory, chemical kinetics 
(e.g., the description of the Belousov Zhabotinskii reaction), solid s tate  electronics, etc. (see, e.g., [18-21]). 

It  is easy to see tha t  G(x, c~, 7) is a piecewise-linear function whose graph has a constant slope equal 
to (1 - 2~). Depending on tile parameter  a,  the nmp generated by tile function G, i.e., x H G(x,  a, 7), 
call manifest quali tat ively different types of behavior. For 0 < a < 1 (Fig. la) ,  its behavior is regular, and 
depending on 7, tile map call have one or two stable points (the points A and B) at tract ing ahnost  all 
points of the phase space. For c~ > 1, tile absolute value of tile slope of the graph of tile map exceeds uni ty 
(see Fig. lb),  which corresponds to an exponential divergence of neighboring trajectories. Ill this case, if 
the motion of a phase  point is finite, the dynamics is chaotic. 

H()mogeneous model (1) composed of concatenated functions of form (2) was described in detail in [17]. 
We recall the principal  results of this study. System (1), (2) Call be interpreted as an N-dimensional  
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Fig. 1. The m a p x ~ G ( x , a , 7 ) :  (a) for (t = 0.25 and T = -0.2; (b) lbr ct = 125 a n d T = - l .  

piecewise-linear map f :  ]R N ~ R N. Because G(x , ( t ,7 )  is a piecewise-linear flmction with a constant  
derivative, the differential D/ of the map  f is a matrix with constant coefficients. It is therefore easy 
to find the Lyapunov indices Ai of this map.  If p,~ are the eigenvalues of D f ,  then A, = log IPsl. If  any 
eigenvalue p~ lies outside tile unit circle on the complex plane, then all t ra jector ies  of the map f are unstable. 
Otherwise, the model dynamics is regular. The  problem of the system behavior  is therefore connected 
with investigating the location of the roots Ps. To cah:ulate Ps, we express the  characteristic polynomial  
for the N-dinlensional map differential in terms of determinants of three-diagonal  matrices with different 
dimensions. We can obtain recursive relations for these matrices. In te rpre t ing  these relations as finite- 
difference equations with given initial conditions, it is possible to find the solutions, which are proport ional  
to the Chebyshev polynonfials of a linear function of the eigenvalues of Dr .  I t  can be shown tha t  because of 
the properties of Chebyshev polynomials, the characteristic polynomial reduces to a quadratic third-order  
polynomial of the known function ps. Calculating the values of Ps and analyzing their locations on the 
complex plane lead to a partition of the pa ramete r  space of map system (1), (2) into two domains (Fig. 2): 

1. Domain  D1 is (tetermined by parameters  ct and ~ such that  the absolute  values of all eigenvalues 
of the map f differential are smaller than  rarity, and the model dynamics  is therefore regular. 

2. Domain D2 is determined through the condition that  the set of eigenvalues Ps contains at least 
one root satisfying the inequality IP~I > 1. In this case, generally, the  dynamics can be infinite. 
However, if the motion is finite, the behavior of system (1), (2) is said to be chaotic [9 11]. 

Systetn (1), (2) is spatially homogeneous in the sense that  all its elements (i.e,, the maps x ~ G(x,  ct, 7)) 
are equal. However, our goal is to investigate the spatially inhomogeneous diffusive model. The  inhomo- 
geneity can be related either to different map  types acting in different space points  or (if the maps  tbr all 
the elements are equal) to ditIbrent map  parameters .  

In this analytic study, we restrict ourselves to the latter case, i.e., we assume that  every element is a 
piecewise-linear map x,i ~ G(x~, (~, 7) (see Eq. (2)) but, in contrast to the homogeneous case, there are 
two clement types distinguished by the values of  the parameters (ti of the function G(x,i; ai, 7). 2 We let 
the parameter  c~ correspond to one type of the elements and the paramete r /3  correspond to the other  type. 

2Generally, the elements can also differ by the vahm of 7- However, it is shown below that the dynamics of both the 
homogeneous and the inhomogeneous systems does not depend on % 
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Fig.  2. Parameter space of a homogeneous annular chain of diffusively concatenated maps (1), (2). 

As in honiogeneous case (1), we take the chain in the form of a ring, i.e., Xn+N(k) = xn(k). 
We invest igate two qualitatively different cases in detail: the  model  with spatially periodic defects  a n d  

the model  with a single defect. 

2.2.  A n n u l a r  m o d e l  w i t h  a s p a t i a l l y  p e r i o d i c  i n h o m o g e n e i t y .  The  te rm spatially per iod ic  
inhomogenei ty  refers to the case where the values of the pa rame te r  of  the flmction G change f rom one 
element to ano ther  periodically, i.e., the parameters  vary as a,/3, c~, f l , . . . .  The  dynanfics of a chain  wi th  

such an inhomogene i ty  can be flflly described analytically. 

W> consider a conca tena ted  one-dimensional net of  the form 

xn(l~+l)=[G(xn(k) ,o~,~)+s(.~Sz+l(k)-2xn(lr  l(k)) for odd n, (a) 
c ( . n ( k ) , / 3 ,  + 4 x . + , ( a . )  - 2 .n (k )  + . , , _ , ( k ) )  for even 

where Xn+N(k) ~ xn(k) ,  the funct ion G is still given by relat ion (2), and N is even (otherwise cha in  (3) 
cannot  be conver ted  to  the form of a ring). Vv> seek the values of  the parameters  a , /3 ,  and s co r r e spond ing  

to qual i ta t ively different regimes of behavior of periodically inhomogeneous  ammlar  model (3), (2). W'e 

calculate the L y a p u n o v  indices of  sys tem (3), (2) using the technique developed in [17]. 

Taking the  b o u n d a r y  condit ions into account, we express the  differential of  the N-dimens iona l  m a p  

generated by a sy s t em of form (3) as 

D f  =_ Q N  = 

1 - 2 c -  2 a  ~ 0 - - -  E \ ) c 1 - 2c - 2/3 c . . .  0 
0 ~ 1 - 2 c - - 2 o ~  . . .  0 . 

�9 . , - , 

c 0 0 .-- 1 - 2 ~ - 2  /3 

To find tile eigenvalues Ps, s = 1, 2, . . . ,  N ,  of tile matr ix  Q N ,  w e  calculate  tile de terminant  

det (QN -- pIN) = 

2 q z  ~ 0 0 . . .  
2 z 2 ~  ~ 0 - ' '  0 

0 S 2 Z l C  ~ - - - 0 

: : : : " . .  : 

0 0 0 0 . . .  
0 0 0 . . .  2z2c 

1 2 8 9  



where z 1 and  z2 are de termined fl'om the relat ions 1 - 2e - 2ct - p = 2Zle a n d  1 - 2c - 2fl - p = 2z2c. 

Expand ing  the de te rminant  with respect to the  first row, we obta in  

det(QN -- p I N )  = 2 Z l ~ B N - 1  -- g2BN-2 -- 2C N -- g 2 B N _ 2 ,  

where  

B N  = 

2z le  ~ 0 . . .  0 

2z2c e 0 

0 c 2 z l c  . . .  0 , 
�9 , , �9 

0 0 0 - - -  2z2cl 

B N  

2z2e c 0 - �9 �9 0 
2Zle e -- - 0 

0 e 2z2c  �9 �9 �9 0 . 
�9 . . �9 ". 

0 0 0 . . .  2z1E 

It is easy to see t h a t  BN(Z1, Z2) Call be o b t a i n e d  from B N ( Z l ,  z2) th rough  the  s u b s t i t u t i o n  Z 5 +--+ Z2, and  we 

therefore use a recursive relat ion to find B N ( Z l ,  z2). Expand ing  B N  with  respec t  to the first row, we ob ta in  

2 Z l S B N - I  - - 2 2 B N - 2  

B N  = 2 Z 2 C B N - 1  -- g 2 B N  2 

for even  N ,  

for odd N.  

It  is now easy to express tile odd-order  de t e rminan t s  through tile even-order  de t e r mi na n t s :  

B2N+2 + y2B2N 
B 2 N + I  = (4) 

2ZlS 

W'e then o b t a i n  a recursive relat ion for the  even-order  de terminants :  

B 2 N  = C2(4ZlZ2 -- 2 ) B z N - 2  - g4B2N-4 .  (5) 

Relat ion (5) can be interpreted as a difference equat ion with the ini t ial  c o n d i t i o n s  

Bo = 1, 132 = J ( 4 z l z 2  - 1). (6) 

Fur ther ,  solving system (5), (6) and  t ak ing  Eq. (4) into account,  we o b t a i n  

B N ( Z l ,  Z2) = N Z2 
c UN(~.) 

for even N,  

for odd N,  

where U x ( z )  is a Chebyshev polynonl ia l  of the  second kind. In turn,  the  r e l a t i ons  for B N ( q ,  z2) have the 
fornl  

ENUN(Z)  for even N,  

J~N(ZI 'Z2)  = "EN ~ U N ( Z )  for odd N.  

Using tile relat ions for B N - 1 ,  B N - 2 ,  and  /3N-2,  we find 

( |et((~N -- p i N )  = 2EN ( z U N _ I ( Z )  -- UN_2(Z)  -- 1).  (r) 
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I t  is now easy to find the eigenvalues of the differential of map (3), (2). It  follows from Eq. (7) tha t  

z U N _ I ( Z )  - - U N _ 2 ( z ) - - I = O  (s) 

or TN(Z)  -- 1 = 0, where we use tile relat ion between the second-kind Chebyshev polynomials UN(Z) and 
the first-kind Chebyshev polynomials  TN(Z) .  Because 

T (z) = - + - 
2 

(where z 2 = zlz~_), if we set t = z - v/z 2 - 1, we obtain 

1 ( ~ N )  t N +  - - 1 = 0  

or (t N - 1) 2 = 0 from Eq. (8). Consequently,  ts = e i~'~/N and zs = cos(27rs/N),  s = 1, 2 , . . . ,  N .  Recalling 

that  2zle - 2z2c = 4z2c 2, we obtain the simple equation 

2 , (2Tr)  
( 1 - 2 e - 2 c t - p ) ( 1 - 2 5 - 2 . ~ - p )  = 4 e  cos" ~ - s  . 

Solving this equation with respect to p, we find the set of eigenvalues of the differential of map (3), (2): 

P L 2 = l - 2 ~ - - c x - / 3 4 -  c~ - /3 )  2 + 4 e  2cos 2 s , (9) 

where s = 1, 2 . . . .  , N / 2 .  The dynamics  of system (3), (2) is fiflly regular if all values of Ps lie inside the 
unit circle on the complex plane. All P~,2 are real; therefore, the regular-dynamics condition is satisfied if 

2c + c~ + /3  > X/4c 2 + (c~ - / 3 )  2 , 

z + - - - ~  + 2 +  < 1 .  

Because c, a ,  3 > 0, the first inequality of this system is always true. In turn,  the condition c + (a  + ~) /2  + 
~ a  2 + (ct - fl)2/4 > 1 is satisfied in the  parameter  space domain where A~ > 0. 

The  boundary between the domains  of qualitatively different (regular or chaotic) dynamics is a surface 
in the three-dimensional space of the pa ramete r s  (c~,/3, e) given by the expression 

e + - - - - ~ +  2 + _ _  - 1 .  ( l o )  

As an illustration, we consider the sections of tile phase space of system (3), (2) by planes 6 = const, where 
(~ = /3 - o' is tile iMlomogeneity p a r a m e t e r  (Fig. 3). Let D1 be tile regular-dynamics domain, and let D2 
be the domain where A~ > 0. The  boundary  between these two domains is deternfined by an equation 
that  follows from Eq. (10). For comparison,  the boundaries  separating the domains D1 and D2 for the 
homogeneous  ((~ = 0) system of conca tena ted  maps (see Fig. 2) are shown in Fig. 3a,b (dashed lines). As 
follows from Fig. 2, the model with 5 > 1 exhibits a chaotic dynamics for any values of c and c~. For 6 < 1; 
there exists a domain D ,  where the dynamics  is regular. In a certain range of values of the parameters  
0 < ~ < 1, this domain is a subarea  of the regular behavior  domain of the homogeneous model. For 
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Fig. 3. Sections of the parameter space for model (2), (3) by the planes 6 = const: (a) for -1  < 6 < 0; 
(b) for O<  6 < 1. 

- 1  < 6 < 0, there  exist values of the parameters  e and a such that  the dynamics of the inhomogeneous 
model is regular,  while the dynamics  of the homogeneous one is chaotic. The restriction ct > - ~  corresponds 
to the condit ion (3 > 0. For ~ < - 1 ,  the domain D1 valfishes, and model (3), (2) exhibits only chaotic 
properties for all possible values of e and a. As directly follows fi'om Fig. 3, there are two qualitatively 
different possibilities: either the pa ramete r  a belongs to the regularity domain, the parameter  fl belongs 
to the chaos domain  with ks > 0, and the general dynamics is regular or the dynamics of the periodically 
inhomogeneous model  can be chaotic�9 The realization of one of these two possibilities depends on tile value 
of the diffusion pa rame te r  c. 

2.3. A n n u l a r  m o d e l  w i t h  a s ing le  de fec t .  We now consider another interesting spatially inhomo- 
geneous model  of  diffusively conca tena ted  maps, the system with a single defect. In this case, the parameter  
f4 (see formula (2)) corresponds to one of the N elenmnts of the system, while the parameter  (t corresponds 
to the remaining N - 1  elements. Wi thout  loss of generality, we can set this single different element to 
correspond to n = 1. Therefore, we exanfine a model of the form 

{ o,, + .... , (k)  - 2x . (k )  + 

Xn(k i) = a(xl(k) ,Z," / )  +s -- 2Xl 
n = 2 , 3 , . . . , N ,  

(n) 
n = l ,  

where Xn+ N ~ x n ( k  ). As above, let the function G(x, a, ~) be given by expression (2). W> deternfine the 
ditfbrential of the  corresponding m a p  for system (11), (2): 

1 - 2 e  - 2 ~  c 0 . . . .  '~ 
a 1 - 2c - 2a  c . .-  0 

D I - - Q N =  0 ~ 1 - - 2 ~ - - 2 a  . . .  0 / " (12) 
�9 �9 . - � 9  

e 0 0 .-- 1 -- 2 ~ -  2(~ 

If the technique used above to find the Lyapunov indices (see Sees. 2.1 and 2.2 and also [17]) is applied to 
niodel (11), (2), then  the characterist ic  equation for map dittbrential (12) leads to the necessity to find the 
roots of a po lynomia l  of order 2 N + 2 .  This can only be done mnnerically. We therefore use a somewhat 
(titti~rent approach  for this model. 

We es t ima te  the regular-dynamics domain of system (11), (2) using the est imate for the eigenvalues of 
matrix (12) based on the Guershgorin theorem [22]. According to this theorem, all eigenvalues of a matr ix  
A = {aij}~• belong to a union of circles on the complex plane: 

ps 0{zec:ll -a. jl<K}, s= l ,2 , . . . ,X ,  
i=1 
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/ 

Fig. 4. Estiinate of the regular-dynamics domain for inhomogeneous chains with two element types 
in the parameter space (a, j3, c). 

' ! n where R' i is either the row quasi-norm of tile matrix A, R i = ~j=l , j# i  ]aij], or the columnar quasi-norm of 

the matrix A, R} = ~ ' i~l , i#j  [a,~j ]. Because map differential (12) is a real symmetr ic  matrix, the row and 
the colunmar quasi-norms coincide, and the eigenvahms of Df are real. Therefore,  the Guershgorin circles 
are transformed into intervals on the real axis: 

n 

i = l  

Because 6 > 0, it is easy to find from expression (12) that 

R'~ = ~ I",~Jl = Icl + I~I = 26 
j=l 
j#i  

We note that  R~ does not depend on i and there are only two different types of diagonal elements in the 
map differential D] (see Eq. (12)); therefore, the eigenvalues of Df belong to the union of two intervals 

{z E ~ :  I 1 - 2 6 -  2 a -  z I _ 26} U {z E Ii~: I1 - 2 s -  2 / ~ -  z I _< 2c}. 

Because ct, 3,r  > 0, we then obtain an upper estimate for tile absolute values of the eigenvalues of IDf: 

- [ a + 2 s ,  a > 3 .  

Therefore, the domain D1 in the parameter  space (a, 3, 6) satisfying the conditions 

/ 3 + 2 6 < 1  for a < 2, b~: (13) 
a + 2 6 <  1 f o r a > 3 ,  

corresponds to a regular dynamics of inhomogeneous model (11), (2), and the domain 

{ / 3 + 2 6 > 1  fbr a < fl, 
/ )2 :  (14) 

a + 26 > 1 for a > ~3, 

corresponds to positive As. The domains/)1 and / )2  are shown in Fig. 4. The  domain  L)1 is a lower est imate 
for the region of regular dynamics, because it was derived using the upper est imate  for the eigenvalues of 
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Fig. 5. Approximate estimate and exact result tbr the regular-dynamics domain of the model with 
periodic inhomogeneity: (a) for - 1  < (~ < 0; (b) for 0 < 6 < 1. 

tile map ditthrential. Any point of the pa ramete r  space  belonging to /91  cor responds  to a regular  dynamics 

of the model, while any point belonging to /92 co r responds  to either regular  or  (if the mot ion  is finite) 
chaotic dynamics.  

The  derived es t imate  is valid not o n l y  for the  single-detect  model  discussed but also for the entire 
class of aimular sys tems of maps with a diffusive c o n c a t e n a t i o n  of tbrm (1) character ized by the I)resence 

of two types of the  elements (with different pa r ame te r s  c~ of  the flmction G(z~, a~, ~.)). In this case, the 
number  of elesnents of  each type  and their relat ive pos i t ions  do ,lot mat te r .  Indeed, tile qnasi-norms of 

the snap differentials for all such systems coineide, and  the  centers of two possible interwfls containing the 
eigenvalues of  D /  (according to the Guershgorin  theo rem)  are common as well. 

By a corol lary of  the Guershgorin theorem, if the  two intervals where the  estimate of  p~ is made do 
not intersect, then  there is a "clustering" of  tim m a p  differential eigenvalues. Tha t  is, q eigenvalues Ps, 

s = 1, 2 , . . . ,  q, lie within one interval, and N - q  eigenvalues Ps, s = q + 1, q + 2 , . . . ,  N,  lie within tile other 
interwfl, flere, q is the number  of elements wi th  the  p a r a m e t e r  (,:, and N - q  is the number  of elements 

with the paraineter  ft. However, taking tiffs p r o p e r t y  into account  does no t  improve the es t imate  of tim 
regular-dynamics  domain.  

We compare  es t imate  (13) with the exact  result  o b t a i n e d  above for the annu la r  model with a spatially 

periodic inhomogenei ty  (see Sec. 2.2). It  is clear t h a t  t he  mode l  belongs to the  class for which this estimate 
remains valid. For elucidation, we construct  the  sect ions  5 = const of  the  domain  D1 corresponding to 

a regular dynamics  of  system (3), (2) and also those  for the  estinmte /9~ (Fig. 5). It can be seen in the 
figure tha t  es t imate  (13) for the regular -dynamics  d o m a i n  approxilnates the  t rue  behavior of  the model 
rather  well. However,  the est imate fails to reflect t h a t  for - 1  < 6 < 0, the  regular -dynamics  domain for 
system (3), (2) is broader  than the regular -dynamics  d o m a i n  of  tim spat ial ly homogeneous system. 

We now re turn  to system of maps  (11), (2) whose  spat ia l  inhomogenei ty  is connected with tile pres- 
ence of only one defbet. We find the eigenvalues of  m a p  differential (12) numerically. In this case, the 
characterist ic polynomial  can be wri t ten as 

det(QN -- pIN) = 

2 z e + 2 ( a - f l )  e 0 --- e 
r 2zs  ~ - - - 0 
0 e 2zc . . .  0 
: : : " . .  : 

a 0 0 - - �9 2za 

where 2zz 1 - 2c - 2(t - p. Expanding  de t (QN -- pIN)  with  respect to the  first row, we obta in  

det (QN - pIN) = [2ze + 2((t -- fl)] B N - 1  - -  2 g 2 J ~ N - 2  - -  2(--1)No N, (15) 
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Fig.  6. Characteristic form of the sections 6 = const of the parameter space for a chain of N=20 
elements with a single defect: (a) for 5 -0.3; (b) for 6 = (}.3. 

where  
2z$ 

BN = 0 

0 

e 0 . . .  0 
2ze e . . .  0 

c 2zc --- 0 
: : ".. : 

0 0 �9 -- 2z~ 

As above, we use the  expansion of  BN with respect to the first row to obtain  tile recursive relation BN = 

2zgBN-1 -- C2Bg-2.  This relat ion can be interpreted as a difference equat ion wi th  the  initial conditions 
Ba = 2z& B2 = e2(4z 2 - 1), whose solut ion is of the form 

BN = eNUN(z), (16) 

where UN(z)  is a second-kind Chebyshev  polynomial.  Taking Eq. (16) and the expression for UN(Z), 

UN(Z) = (Z+ ~ ) N + I  _ (Z- -  ~ ) N + I  = ( 1 / t ) N + i  _ _ t N + i  

2~2~ 2 - 1 i/t - t ' 

where t = z - v/z u - 1, into account ,  we obta in  

[t~-N+' + 1 ( ~ ) 1 - - t 2 N  1 
de t (QN -- pIN) = 2a N [ ~-~-ff + (1 --  t 2) t N - 1  (--1)N 

from Eq. (15). Hence,  the character is t ic  equat ion for map  differential (12) can be expressed as 

t 2N+2 + 2  ( ~ ) t  ~ - - t 2 N - - 2 ( - - 1 ) N t  N+2 + + 2 ( - - 1 ) N t N + t  2 - - 2  ( - ~ )  t - -  1 = 0. (17) 

It is now easy  to  calculate Ps by finding the roots  of  Eq. (17) nmnerically. C o m p a r i n g  the Ps values to 
unity for all possible values of  the pa ramete r s  a,  /~, and  c, it is s t raightforward to  determine the domains  

D1 and D2 o f  qual i ta t ively  different dynamics  for an annular  chain of diffusively colmected maps with a 
single defect .  T h e  sections of  these donmins  by the planes 5 = const (where 5 = ~ - (~) are shown in 
Fig. 6. E s t i m a t e  (13) tbr the regu la r -dynamics  domain  is shown by the dashed line. In this case as it was 
for the mode l  wi th  a periodic inholnogeneity,  this domain  (for positive 5) is b roader  t han  tha t  predicted 

by the es t imate .  However,  in con t ras t  to  the periodic inhomogeneity, the es t imate  for 5 < 0 flflly coincides 
with the numer ica l  result  and also wi th  the result tbr a homogelmous chain. Therefore ,  if the parameter  
correst)onding to  one  of  the sys tem elements  is smaller t han  those corresponding to  all o ther  elements, then 

this defect has  no influence on the  dynamics  of the entire ensemble. However, if the  anomalous  paralneter  
value is larger  t h a n  the  normal  value, then  the regular dynamics  domain of the mode l  is narrower than  tha t  

in the h o m o g e n e o u s  case. 
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3. C o n c l u s i o n  

We invest igated the behavior of systems of diffusively conc.atenated one-dimensional maps  tha t  model 
a one-dimensional active medimn with a spatial inhomogeneity. Different types of iixhomogeneity were 
exanlined. For all systems whose spatial inhomogeiieity is related to the presence of two types  of elements 
that  differ by a parameter  value, a lower estimate for the regular ensemble dynamics domain  in the space 
of the pa rame te r s  was derived analytically. This estimate was based on the localization of the differential 
eigenvalues of the map. Numerical and exact analytic results were obtained for two specific models  of this 
class. 

The results for the three examined cases, i.e., est imate (13) of the regular-dynamics domain  for the 
class of models with two types of elements, the exact results for the system with periodic inhomogenei ty 
(Fig. 3), and the exact results for the single-defect model (Fig. 6), reveal that  there exist two general  types of 
system dynamics.  For the first type, the parameter  of one sort of elements belongs to the regular-dynamics  
domain while the parameter  of the other sort belongs to the unstable-behavior domain, and the general 
dynamics remains  regular. For the second type, in contrast,  the model dynamics can be unstable  or, in the 
case of finite motion,  chaotic. The  realization of either behavior type depends on the diffusion pa rame te r  

and is possible only if the parameter  is small. Obviously, the general dynamics of all chains belonging to 
the c.lass of our interest cannot be regular for sufficiently large values of ~. 

As far as we know, this work is the first a t tempt  to describe the dynamics of inhomogeneous systems 
of concatenated maps  analytically. The present knowledge is far from exhaustive even for the homogeneous 
discrete models of continuous media. Much is yet to be elucidated, nlany qualitative mid quant i ta t ive  
questions remain  open. Moreover, this work did not address the problems of possible s ta t ionary  states of 
the model in the regularity domain, of wave motions along the chain and their dependence on the defects, 
of the dynamics  in the case of time-dependent parameters,  etc. Some of these questions will be answered 
in the near future  [23, 24]. 
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