
Abstract. This article is a methodological manual for those who
are interested in chaotic dynamics. An exposition is given on the
foundations of the theory of deterministic chaos that originates
in classical mechanics systems. Fundamental results obtained in
this area are presented, such as elements of the theory of non-
linear resonance and the Kolmogorov ±Arnol'd ±Moser theory,
the PoincareÂ ± Birkhoff fixed-point theorem, and theMel'nikov
method. Particular attention is given to the analysis of the
phenomena underlying the self-similarity and nature of chaos:
splitting of separatrices and homoclinic and heteroclinic tan-
gles. Important properties of chaotic systems Ð unpredictabil-
ity, irreversibility, and decay of temporal correlations Ð are
described. Models of classical statistical mechanics with chao-
tic properties, which have become popular in recent years Ð
billiards with oscillating boundaries Ð are considered. It is
shown that if a billiard has the property of well-developed
chaos, then perturbations of its boundaries result in Fermi
acceleration. But in nearly-integrable billiard systems, excita-

tions of the boundaries lead to a new phenomenon in the en-
semble of particles, separation of particles in accordance their
velocities. If the initial velocity of the particles exceeds a certain
critical value characteristic of the given billiard geometry, the
particles accelerate; otherwise, they decelerate.

1. Introduction

For a long time, the concept of chaos was associated with the
assumption that, at least, the excitation of an extremely high
number of degrees of freedom is necessary in the system. The
formation of this idea seems to have been influenced by the
concepts of statistical mechanics, in which the motion of an
individual gas particle can be predicted in principle but the
behavior of a system consisting of a huge number of particles
is extremely complex, and therefore a detailed dynamic
approach is meaningless. This dictated the need for a
statistical analysis. But extensive studies have demonstrated
that the validity of the statistical laws and statistical
description is not restricted to highly complex systems with
a large number of the degrees of freedom. Random behavior
can also be exhibited by entirely deterministic systems with a
moderate number of the degrees of freedom.Here, the point is
not the complexity of the system or the presence of external
noise but the emergence of an exponential instability of
motion at certain values of the parameters. The dynamics of
systems subject to such an instability is called dynamic
stochasticity, or deterministic (dynamic) chaos. Investiga-
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tions in this area are of fundamental importance because they
disclose the nature of randomness by supplementing the
hypothesis of molecular chaos with the hypothesis of
dynamic stochasticity.

H PoincareÂ [1] was the first to note the relation between
statistics and instabilities. However, a statistical approach to
the description of systems with numerous degrees of freedom
was previously suggested by L Boltzmann [2], who conjec-
tured that the motion of particles in a rarefied gas should be
regarded as random and that the entire energetically allowed
phase-space domain is accessible to each particle. Such a view
of the properties of multiparticle systems, known as the
ergodic hypothesis [2 ± 4], became the basis of classical
statistical mechanics. A rigorous substantiation of this
hypothesis could not be found for a long time, however.
Some progress in this direction was achieved due to studies by
P Ehrenfest [5, 6] (see also Refs [7, 8]). In particular, they
allowed establishing applicability limits for the laws of
statistical mechanics. However, a well-known study by
E Fermi, J Pasta, and S Ulam [9] (see Refs [10, 11] for a
more detailed exposition), who made the first attempt to
verify the ergodicity hypothesis, put the problem of sub-
stantiation of statistical physics in the forefront again.

This problem can be partially resolved based on studies by
PoincareÂ (see Ref. [12]), who concluded that the motion of a
system is extremely complex in the neighborhood of unstable
fixed points in phase space. This was the earliest indication of
the possible chaotic properties of nonlinear dynamical
systems. Later, G D Birkhoff [13] showed that if the ratio of
the frequencies is rational (i.e., at a resonance), stable and
unstable fixed points appear in phase space. Higher-order
resonances change the topology of phase trajectories and lead
to the formation of a chain of `islands.' It turned out that the
regular perturbation theory fails to describe such resonances,
because the solutions are strongly perturbed near the
resonances, and therefore small denominators emerge in the
expansion and the series diverge.

N S Krylov [14] was the first to deeply investigate the
nature of statistical laws. He showed that the property of
mixing and the related local instability of nearly all trajec-
tories of the corresponding dynamical systems underlie this
nature. In view of this, M Born [15] (see also [16]) suggested
that the behavior of the systems is not predictable in classical
mechanics. Later, the dynamics due to such instabilities in the
systems came to be known as dynamic stochasticity, or
deterministic (dynamic) chaos. The word `chaos,' in this
meaning, seems to have been introduced by J A Yorke [17]
(see Ref. [18], p. 338). But as noted by Ya G Sinai, the word
combination `deterministic chaos' was first used by B Chir-
ikov and G Ford in the 1960s.

Physically, due to unavoidable fluctuations (i.e., small
perturbations of the initial conditions), the initial state of the
system is to be specified by some distribution. The problem is
in predicting the evolution of the system based on this initial
distribution. If the system is stable, such that small perturba-
tions do not increase exponentially with time, its behavior is
predictable. In contrast, if the system is subject to exponential
instability (which is expressed by saying that the system has a
sensitive dependence on the initial conditions), the process
allows only a probabilistic description. In essence, precisely
these considerations formed the basis of the modern views of
dynamical chaos. The discovery that it is chaos, rather than
external noise, that mainly determines the behavior of the
system was unexpected (see Ref. [20] for a review).

The schools of A N Kolmogorov and A A Andronov, to
which a brilliant group of outstanding contemporary math-
ematicians belongs, have deeply influenced the development
of the theory of dynamical chaos. In particular, Kolmogor-
ov's theorem of the preservation of almost periodic motion
in weakly perturbed Hamiltonian systems, proved by
V I Arnol'd and J Moser and known as the Kolmogorov ±
Arnol'd ±Moser (KAM) theorem (see Refs [21 ± 25]),
became a keystone in understanding the origin of chaotic
behavior. In their early studies, D V Anosov [26] and Sinai
[27, 28] showed that dynamical chaos is a widespread
phenomenon.

In his pioneering investigations of the bifurcations of a
saddle ± focus separatrix [29, 30], L P Shil'nikov developed,
among other things, a special technique for the analysis of the
dynamics of systems near saddle-type trajectories and
uncovered the extreme complexity of the structures that
develop as homoclinic trajectories appear. It was demon-
strated that the behavior of systems must be complex in the
full neighborhood of the parametric values at which a
homoclinic orbit exists. Later, Shil'nikov, L M Lerman,
N K Gavrilov, I M Ovsyannikov, D V Turaev, and others
developed new methods that allowed describing a finite
number of bifurcations that lead to chaotic dynamics (see
Refs [31, 32] and the references therein).

A new stage in explaining chaotic behavior and its origin
in deterministic systems was initiated by Kolmogorov's and
Sinai's studies [33 ± 35], where the concept of entropy was
introduced for dynamical systems. These studies laid the
foundations of a consistent theory of chaotic dynamical
systems.

Various abstract mathematical constructions have played
an important role in the development of the theory of
deterministic chaos. In particular, S Smale [36], to disprove
the hypothesis of the density of systems that exhibit only a
periodic-type behavior, constructed a notable example,
currently known as the `Smale horseshoe.' This example
implies that there exist systems that have both an infinite
number of periodic orbits with different periods and an
infinite number of aperiodic trajectories [18, 36, 37]. Sub-
sequent to the Smale horseshoe, Anosov's C-systems were
found [26, 38], which are characterized by the most pro-
nounced mixing properties. Such systems were generalized by
introducing Smale's `Axiom A' [37] (see also Refs [39 ± 41]
and the references therein) and hyperbolic sets [18, 37, 40 ±
42]; these generalizations specified an important class of
dynamical systems that have the property of the exponential
instability of trajectories (see Ref. [43] for a review).

At nearly the same time, mathematical studies began
appearing in which attempts were made to substantiate
statistical mechanics based on the analysis of billiard
systems [27, 28]. Originally, billiards were introduced as
simplified models appropriate for the consideration of
certain problems of statistical physics [13] (see also the
references in Refs [44, 45]). A billiard on a plane is a
dynamical system that describes bodies (balls) moving
inertially inside a bounded domain, in accordance with the
law of equality of the incidence and reflection angles. In
essence, planar mathematical billiards are the usual billiards
without friction, although with an arbitrary configuration of
the table and without pockets.

Krylov's problem ofmixing in a system of elastic balls [14]
was first solved using billiard systems. Furthermore, it was
shown that systems corresponding to billiards with scattering
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boundaries have much in common with geodesic flows in
negative-curvature spaces, i.e., withAnosov flows. Somewhat
later, the class of billiard systems capable of exhibiting
chaotic properties was substantially extended (see Refs [45 ±
47] and the references therein). It was shown based on a
generalization of such systems (a modified two-dimensional
Lorentz gas) that motion in purely deterministic systems can
be similar to Brownianmotion [44, 45]. This result became the
first rigorous confirmation of chaotic properties exhibited by
dynamical systems (not involving any random mechanism).

Further investigations of nonlinear systems, both theore-
tical and experimental, have shown how typical the chaotic
behavior is in systems with few degrees of freedom. It became
obvious that chaotic properties can bemanifested by a variety
of nonlinear systems; if chaos is not revealed, this can merely
result from the fact that the development of chaos is restricted
either to very small domains in the parameter space or to
physically unrealizable domains.

How does chaotic motion originate? What is the nature of
chaos? Seemingly, there should be many paths toward the
onset of chaos. But it became known that the scenarios of
chaotization are far from numerous.Moreover, some of them
obey universal laws and are independent of the nature of the
system. The same development scenarios for chaos are
inherent in a variety of objects. The universal behavior
resembles the usual second-order phase transitions, and
invoking renormalization-group and scaling techniques
known in statistical mechanics opens new avenues in
investigating chaotic dynamics.

This article presents the foundations of the theory of
dynamical chaos. We describe the principal results obtained
in the field that belong to classical mechanics, such as
elements of the theory of nonlinear resonance and the
KAM theory; the PoincareÂ ± Birkhoff fixed-point theorem,
which is important for understanding the sources of chaotic
behavior; and the Mel'nikov method, which allowed obtain-
ing a criterion for the origin of chaos analytically in some
cases. Particular attention is given to the nature of chaos.
Specifically, we detail the factors that lead perturbed systems
to manifest self-similarity, to the splitting of separatrices,
and to homoclinic and heteroclinic tangles. We also show
that unpredictability, irreversibility, and decay of temporal
correlations occur in systems in which such phenomena are
observed.

In Section 9, we describe models of nonequilibrium
classical statistical mechanics with chaotic properties, highly
popular today: billiards with oscillating boundaries. The
Lorentz gas and stadium-type billiards are considered in
detail. An interesting result is presented: the analytic form of
billiard-particle acceleration law, i.e., a proof of the presence
of Fermi acceleration in billiards with well-developed chaos.
But if a billiard system is near an integrable system, such that
the curvature of the billiard boundary is not large, small
oscillations of the boundary lead to a new phenomenon. A
specific, billiard version of Maxwell's demon originates: a
billiard particle either accelerates or decelerates depending on
the initial conditions. In other words, perturbation of the
boundaries of such billiards results in a velocity stratification
of the particle ensemble.

The modern mathematical techniques used to analyze the
chaotic properties of dynamical systems are fairly complex.
But in this article, we pursue the aim of giving a general idea of
the origin of the phenomenon of deterministic chaos and
expose the fundamental concepts underlying the currently

known approaches to chaotic dynamics. Therefore, our
presentation is mainly based on geometric techniques and a
qualitative approach. Although most of the results described
here have been known for a rather long time, we present them
in a form appropriate for a nonexpert to comprehend the
origins of chaotic dynamics. Therefore, in particular, this
article is methodological.

2. Background

The subject of our analysis is the systems described by
ordinary differential equations

_x � v�x; a� ; �1�

where v � fv1; v2; . . . ; vlg is a vector function (typically
assumed to be smooth), a symbolizes the set of parameters,
and x � fx1; x2; . . . ; xlg is an l-dimensional vector with
components x1; x2; . . . ; xl that characterizes the state of a
dynamical system. If the substitution of a function F�t; ci�,
ci � const, in Eqn (1) turns them into identities, this function
is called a solution. Specifying initial conditions x�0� � x0
uniquely determines the solution at any instant t,

x�t� � F�t; x0� : �2�

Any solution x�t� of system of equations (1) can be
geometrically represented by a curve in the l-dimensional
space of variables x1; . . . ; xl. This l-dimensional space is called
the phase space of the system (we let M denote this space).
Each state of the dynamical system corresponds to a point in
M, and each point in M corresponds to a unique state of the
system. Changes in the state of the system can be interpreted
as the motion of a point (called the representation point) in
the phase space. The trajectory of this representation point,
i.e., the set of its consecutive positions in the phase spaceM, is
called the phase trajectory.

We assume that system (1), whose phase space isM, was in
the state x0 at an instant t0. Then, generally, it is in another
state at an instant t 6� t0. We let F tx0 denote this new state.
Thus, for any t, we define the evolution operator, or the shift
map F t : M!M of the phase spaceM into itself. ThemapF t

transforms the system from its state at t0 into the state at t. In
other words, solution (2) of Eqns (1) establishes a correspon-
dence between the point xi�t0�, i � 1; 2; . . . ; l, of the phase
spaceM at the instant t0 and a certain phase-space point xi�t�
at an instant t:

F tx0 � x�t� : �3�

Therefore, in the general case, any phase-space domain O0

transforms in time t into another domain, Ot � F tO0, under
the action of the map F t. The map F t : M!M is also called
the phase flow, and the function v�x� is the vector field of the
given dynamical system whose phase space isM.

If the phase flow F t has a secant S, i.e., a certain
codimension-1 hypersurface that is transversally intersected
by phase curves, then a mapF can be defined on S as follows:
to any point p of S we associate the closest (next to p) point,
p 0, of intersection of the phase curve with the same hypersur-
face S. Then the analysis of the dynamics of the original
system reduces to analyzing the properties of the map F,
which is called the succession function, or the PoincareÂ map
(sometimes, the PoincareÂ return map).
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Systems for which div v � 0 are called conservative. Most
objects considered in classical mechanics belong to this class.
Investigating the evolution of conservative systems is of
fundamental importance because it is related to a number of
problems such as the substantiation of the Boltzmann ergodic
hypothesis, planetary motion and the N-body problem, the
dynamics of charged particles and plasma heating, etc.

We begin our analysis with the Hamiltonian approach,
whose advantage is not in its formalism but in a deeper
interpretation of the physical essence of the phenomenon in
question. In fact, the Hamiltonian approach is a geometrical
method of analysis. It has some advantages and allows
obtaining solutions to problems that are not amenable to
other techniques of analysis.

3. Hamiltonian mechanics

The Hamiltonian formalism is based on the well-known
Hamilton equations, which are given by the system of
ordinary differential equations

_qi � qH
qpi

; _pi � ÿ qH
qqi

�4�

(where i � 1; 2; . . . ; n), and for which the initial conditions at
t � t0 are specified as qi�t0� � q 0

i , pi�t0� � p 0
i . Such systems

are rich in a variety of motions, from completely integrable
dynamics to quasi-periodicity and chaos.

Among the fundamental properties of Hamiltonian
systems is the conservation of the volume of an arbitrary
phase-space domain, i.e., the validity of the Liouville
theorem,�

D0

dq0 dp0 �
�
Dt

dq dp ;

where D0;Dt �M.

3.1 Integrable systems
The problem of the integrability of Hamiltonian systems is
quite complex. There are a number of rather general
(although, naturally, not universal) methods that in some
cases allow constructing a solution of Eqns (4) or of an
approximation to them. Quite comprehensive reviews and
monographs describing these methods in detail are available
(see, e.g., Refs [48 ± 55] and the references therein). Therefore,
we do not consider them here; instead, we only present a
geometric analysis of integrable systems.

Hamiltonian system (4) is completely integrable (and the
Hamiltonian H is integrable) if there exists a canonical
transformation to angle ± action variables, q; p! a ; J.
Another definition is based on the Liouville theorem on
integrable systems: a Hamiltonian system with n degrees of
freedom is integrable if n independent integrals in involution
are known for this system.

Systems with one degree of freedom �n � 1� are always
integrable because their Hamiltonian H�q; p� � E is an
integral of motion. A pendulum model is a highly representa-
tive example of such systems. Its Hamiltonian can be written
as

H � p 2

2ml 2
ÿmgl cosj ; �5�

where j is the angle of deviation from the vertical and g is the
acceleration of gravity. The equations of motion of the
pendulum are _p � ÿmgl sinj, _j � p=ml 2, or

�j� o2
0 sinj � 0 ; �6�

where o0 �
�������
g=l

p
is the oscillation frequency. Hamiltonians

of this type are typical of many problems and play a
fundamental role in classical mechanics.

If the full energy of the pendulum, H � E, exceeds the
maximum value of the potential energy, E � Erot > mgl, the
momentum p is always different from zero, which leads to an
infinite increase in the angle j, i.e., to the rotation of the
pendulum. Energies E � Eosc < mgl correspond to oscilla-
tions of the pendulum. IfE � Es � mgl, the oscillation period
tends to infinity and the motion follows the separatrix
between the two types of motion, oscillation and rotation
(Fig. 1a). The equation of the separatrix can be written as
ps� �2o0ml 2 cosjs=2, js � 4 arctan

�
exp �o0t�

�ÿ p, where
the plus and minus signs respectively correspond to the upper
and lower branches.

In the neighborhood of the points with the coordinates
�p;j� � �0; 2pk�, k � 0;�1;�2; . . . ; the family of phase
curves consists of ellipses. Such points are therefore called
elliptic. The family of trajectories near the points
�p;j� � �0; p� 2pk�, k � 0;�1;�2; . . . ; is formed by hyper-
bolas, and such points are called hyperbolic.

For an autonomous system with two degrees of freedom,
n � 2, the integrable system in the angle ± action variables
�J; a� has the topology of a two-dimensional torus (Fig. 1b).
In view of the constraints o1 � o1�J1; J2� and
o2 � o2�J1; J2� (if they are present), the frequencies of
gyration in circles O1 and O2 for nonlinear systems can vary
from torus to torus. Their ratio can also vary:

o1

o2
� o1�J1; J2�

o2�J1; J2� : �7�

If quantity (7) is rational,o1=o2 � k=m (a resonance), the
dynamics of the system are periodic: the phase trajectory
closes after kwindings over the circleO1 andmwindings over
the circle O2. If fraction (7) is irrational, o1=o2 6� k=m, the
phase trajectory covers the torus everywhere densely, and the
motion of the system is called quasi-periodic, of almost
periodic.

Therefore, because J1 and J2 are arbitrary, the phase space
is represented by two-dimensional tori, which can be
visualized in ordinary three-dimensional space as a set of
tori nested in one another, with themajor andminor semiaxes
specified by the ratios J1 and J2 (Fig. 2).

a

jp

E � Erot

ÿp

p

0

E � Es

E � Eosc

b

O1

O2
J1

a2
J2

a1

Figure 1. (a) Phase portrait of a nonlinear pendulum and (b) a visual

representation of an integrable Hamiltonian system with two degrees of

freedom in angle ± action variables.
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For integrable systems with n degrees of freedom, their
phase space is 2n-dimensional; in the angle ± action variables,
it has the topology of a set of n-dimensional tori. Any possible
trajectory lies on one of them. Some trajectories may be
closed; others cover the corresponding torus everywhere
densely.

A torus of dimension n5 2 with given J1; J2; . . . ; Jn is
called resonant if the relationXn

i� 1

kioi�J1; J2; . . . ; Jn� � 0 ;

where ki are nonzero integers, holds for a set of frequencies�
oi�J1; J2; . . . ; Jn�

	 �i � 1; 2; . . . ; n�.

3.2 Perturbed motion
The overwhelming majority of Hamiltonian equations (for
systems with n degrees of freedom) are not integrable. But a
Hamiltonian H � H�a ; J� can in some cases be divided into
an integrable part H0 � H0�J� and a part that is not
integrable but can be represented as a small perturbation H1

of H0:

H�a ; J� � H0 � eH1 ; �8�
where H0 � H0�J�, H1 � H1�a ; J�, and e is a small para-
meter. Systems whose Hamiltonians can be written in form
(8) are called nearly integrable systems.

In the chosen variables a and J, the canonical equations
that follow from Eqns (4) and (8) have the form

_Ji � ÿe qH1

qai
; _ai � qH0

qJi
� e

qH1

qJi
; i � 1; 2; . . . ; n ;

�9�
where e5 1. If e � 0, system (9) is completely integrable, and
its solutions cover n-dimensional tori. We now assume that
e 6� 0. How strong are then the changes in the character of the
integrable system?

4. Nonlinear resonance

The answer to the question posed in Section 3.2 essentially
depends on the relation between the perturbing force
frequency and the proper frequency of the system. If the
proper frequency is close to the frequency of the external
force, this results in an increase in amplitude, leading to a
resonance. But for nonlinear systems with perturbation (8),
the frequency depends on the amplitude, and hence the
system falls out of resonance some time later. This reduces
the amplitude, which, in turn, changes the frequency. There-

fore, the system shortly returns to the neighborhood of the
resonance. The so-called phase oscillations thus set in.

Resonances can arise not only between the system and
external influences but also between different degrees of
freedom of the system itself, which corresponds to the
autonomy of the Hamiltonian H1 in Eqn (8). This is the case
of so-called internal resonances.

If the resonance is not isolated, the overlapping of
resonances results in a very complex motion in the system.
Moreover, the resonances prevent finding solutions of the
equations using the technique of the canonical perturbation
theory. In the perturbation theory, the original system is
approximated by a close integrable system subject to a small
perturbation, and the solution is sought as an expansion in
powers of e. The presence of resonances disrupts the
convergence of such series, because this approach implicitly
assumes that the original equations are integrable. This is not
the case in most situations, however. Even very simple
systems may not be integrable, and their dynamics may be
very complex at certain initial conditions. For example,
signatures of dynamical chaos are manifested in the behavior
of a nonlinear pendulum [56, 57]. The perturbation theory
cannot describe such a complex behavior, which is formally
reflected by the divergence of the series. If the initial
conditions of the system correspond to regular trajectories
(quasi-periodicmotion), such trajectories undergo qualitative
rearrangements under the action of perturbations in the
neighborhood of the resonances.

The theory of nonlinear resonance is remarkable for its
ability to obtain an analytic criterion for the onset of irregular
motion in aHamiltonian system. This criterion was originally
introduced in [58, 59]. We consider the theory of nonlinear
resonance fromamore general standpoint, followingRefs [60,
61] (see also Refs [54, 62]). A more complete exposition of the
theory of resonances is given in [63].

4.1 Small denominators
We first consider the internal resonance. We decompose the
function H1�a ; J� [see Eqn (8)] into a Fourier series,
H1�a ; J� �

P
k H

k
1 �J� exp �ika�, and substitute this decom-

position in Hamilton equations (9). This yields

_Jj � ÿie
X
k

kjH
k
1 exp �ika� ;

�10�
_aj � oj�J� � e

X
k

qHk
1

qJj
exp �ika� ; j � 1; 2; . . . ; n ;

where k is a vector with real integer components, Hk
1 are the

Fourier coefficients, and oj�J� � qH0�J�=qJj.
We seek a solution of perturbed system (10) in the form of

a series in powers of the small parameter e:

Jj � J
�0�
j �

X1
s� 1

e sJ �s�j ;

�11�
aj � a �0�j �

X1
s� 1

e sa �s�j ; j � 1; 2; . . . ; n :

Next, using expansion (11) and Eqns (10), we select the terms
containing equal powers of e. In the zeroth approximation, we
then find _J

�0�
j � 0, _a �0�j � oj�J�0��, j � 1; 2; . . . ; n. Therefore,

J
�0�
j � const ; a �0�j � oj�J�0��t� const : �12�

Figure 2.General structure of the phase space of an integrable system with

two degrees of freedom in the action ± angle variables.
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Because

oj

ÿ
J�0� � eJ�1�

� � oj

ÿ
J�0�
�� e

X
m

qoj�J�0��
qJ �0�m

J �1�m ;

we can easily obtain the first-approximation equations

_J
�1�
j � ÿi

X
k

kj ~Hk
1 �J�0�� exp

ÿ
ikx�J�0��t� ;

�13�
_a �1�j �

X
m

qoj�J�0��
qJ �0�m

J �1�m �
X
k

q ~Hk
1 �J�0��
qJj

exp
ÿ
ikx�J�0��t� ;

where ~Hk
1 are the values of the coefficients Hk

1 with the
constant taken into account. Equations (13) can be straight-
forwardly integrated:

J
�1�
j � ÿ

X
k

kj ~Hk
1 �J�0��
kx

exp �ikxt� � const ;
�14�

a �1�j � i
X
m

qoj�J�0��
qJ �0�m

X
k

km ~Hk
1 �J�0��
�kx�2 exp �ikxt�

ÿ i
X
k

q ~Hk
1 �J�0��
qJj

exp �ikxt�
kx

:

It can easily be seen that if the condition

kx� k1o1 � k2o2 � . . .� knon � 0 �15�

(called the resonance relation) holds, terms with zero or near-
zero denominators appear in Eqns (14). This leads to a
substantial increase in the corrections a �s�j and J

�s�
j , which

obviously disrupts the convergence of series (11).
If the resonance relation is not satisfied in first-approx-

imation equations (13), it can hold for equations of higher
approximations, s > 1. The resonance that manifests itself in
the sth order of the perturbation theory is called the order-s
resonance.

We now let the perturbation H1 depend on time
periodically (with a period T � 2p=O), i.e., H1�a ; J; t� �
H1�a ; J; t� T �. A treatment similar to that used in the
preceding case yields

H1�a ; J; t� �
X
k;m

Hkm
1 �J� exp

�
i�ka ÿmOt�� :

In this case, the Hamilton equations become

_Jj � ÿie
X
k;m

kjH
km
1 exp

�
i�ka ÿmOt�� ;

_aj � oj�J� � e
X
k;m

qHkm
1

qJj
exp

�
i�ka ÿmOt��; j � 1; 2; . . . ; n :

As before, the zeroth-approximation solution is given by (12).
The first-approximation equations can also be easily obtained
and integrated, yielding

J
�1�
j � ÿ

X
k;m

kj ~Hkm
1 �J�0��

kxÿmO
exp

�
i�kxÿmO�t�� const ;

a �1�j � i
X
l

qoj�J�0��
qJ �0�l

X
k;m

kl ~Hkm
1 �J�0��

�kxÿmO�2 exp
�
i�kxÿmO�t�

ÿ i
X
k;m

q ~Hkm
1 �J�0��
qJi

exp
�
i�kxÿmO�t�
kxÿmO

;

where ~Hkm
1 are the values of Hkm

1 with the inclusion of the
constant that appears in the zeroth order. Thus, if the
resonance relation kxÿmO � 0 holds, perturbation-theory
series (11) diverge; this is the essence of the small-denomi-
nator problem. To overcome this difficulty, it was suggested
that a canonical transformation be used to pass to special
(resonant) variables.

4.2 Universal Hamiltonian
Let the perturbationH1 be a periodic function of time with a
period T � 2p=n and let the motion be described by the
Hamiltonian

H � H0�J� � eH1�a; J; t� ; �16�

where e5 1. We decompose the function H1 into a Fourier
series:

H1�a; J; t� �
X
k;m

Hkm
1 �J� exp

�
i�kaÿmnt�� : �17�

Then Hamilton equations (9) become

_J � ÿie
X
k;m

kHkm
1 �J� exp

�
i�kaÿmnt�� ;

�18�
_a � o�J� � e

X
k;m

dHkm
1 �J�
dJ

exp
�
i�kaÿmnt�� ;

where Hÿk;ÿm1 � Hk;m
1

�
. It can be easily verified that if the

condition

ko�J� ÿmn � 0 �19�

is satisfied in Eqns (18), then a resonance arises.
To analyze the dynamics in the neighborhood of the

resonance, we isolate the resonant term in decomposition
(17) and consider the behavior of the system determined
solely by this term. We fix the triplet of numbers k0, m0, J0
such that the resonance condition is satisfied exactly,

k0o�J0� � m0n ; �20�

and retain only the resonant harmonic in Eqns (18). Then,

_J � ÿiek0Hk0m0

1 �J� exp �i�k0aÿm0nt�
�

� iek0H
k0m0

1

� �J� exp �ÿi�k0aÿm0nt�
�

� 2ek0
1

2i

n��Hk0m0

1 �J��� exp �i�c� k0aÿm0nt�
�

ÿ ��Hk0m0

1 �J��� exp �ÿi�c� k0aÿm0nt�
�o

� 2ek0
��Hk0m0

1 �J��� sin �k0aÿm0nt� c� ;

_a � o�J� � e
d

dJ
Hk0m0

1 �J� exp �i�k0aÿm0nt�
�

� e
d

dJ
Hk0m0

1

� �J� exp �ÿi�k0aÿm0nt�
�

� o�J� � 2e
d

dJ

��Hk0m0

1 �J��� cos �k0aÿm0nt� c� :
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We introduce the notation j � k0aÿm0nt� c andH 0
1 �

2jHk0m0

1 j. Then Eqns (18) can be rewritten as

_J � ek0H 0
1 �J� sinj ; �21�

_j � k0o�J� ÿm0n� ek0
dH 0

1 �J�
dJ

cosj :

Retaining only the resonant term in expansion (17), we
express Hamiltonian (16) as

H � H0�J� � eH 0
1 cosj : �22�

We now assume that the quantity J is sufficiently close to
J0, such that the deviation DJ � Jÿ J0 is small. In this case,
H0�J� and o�J� can be expanded into series in DJ:

H0�J� � H0�J0� � qH0

qJ
DJ� 1

2

q2H0

qJ 2
�DJ�2 � . . . ; �23�

o�J� � o�J0� � qo
qJ

DJ� 1

2

q2o
qJ 2
�DJ�2 � . . . : �24�

We neglect the terms of orders higher than two in Eqn (23)
and higher than one in Eqn (24). In addition, we takeH 0

1 �J� at
the point J0, use equality (20), and neglect the term � e in the
second of Eqns (21). Then system (21) and Hamiltonian (22)
become

d

dt
DJ � ek0H 0

1 sinj ;
�25�

_j � k0
do�J0�
dJ

DJ ;

H � H0�J0� � o�J0�DJ� 1

2

qo�J0�
qJ

�DJ�2 � eH 0
1 cosj : �26�

For convenience, we here use the notationH 0
1 � H 0

1 �J0�. The
variables DJ and j are canonically conjugate for system (25),
and system (25) itself is generated by the Hamiltonian

�H � 1

2
k0

do�J0�
dJ

�DJ�2 � ek0H 0
1 cosj ; �27�

which is called the universal Hamiltonian of nonlinear
resonance [59].

The canonical transformation that allows passing from
the system with Hamiltonian (26) to the universal Hamilto-
nian of nonlinear resonance has the form

�a; J� ! k0aÿm0nt; DJ� � ; n � o�J0� ; �28�
�H � k0Hÿm0nDJÿ k0H0�J0� :

4.3 Width of the separatrix
We analyze expression (27) and Eqns (25). A similarity
between �H and the Hamiltonian of the nonlinear pendulum
in (5) with l � 1 can immediately be noted. Indeed, the
variable DJ plays the role of the momentum p and the
quantity m � �k0 do�J0�=dJ�ÿ1 has the meaning of the
effective mass. Moreover, the substitution O 2

0 �
ek 2

0H
0
1

��do�J0�=dJ�� reduces system (25) to

�jÿ O 2
0 sinj � 0 : �29�

Equation (29) coincides with Eqn (6) up to a phase lag by p.

Let k0 � 1, m0 � 1 (a first-order resonance). The phase
portrait in the original variables a, J is shown in Fig. 3a. The
double drop-shaped curve, for a small energy E � Eosc,
corresponds to local oscillations of the system. In terms of
the pendulum analogy, this corresponds to its oscillations.
The outer curve corresponds to the energy E � Erot, which
implies rotation in the case of the pendulum. The separatrix
�E � Es� separates these two qualitatively different types of
motion.

We now pass to the coordinate system specified by
transformation (28). The resulting phase portrait is shown
in Fig. 3b. We clarify this figure using the pendulum
analogy. If the pendulum rotates oppositely to the
rotation of the coordinate system, curves located around
the point O inside the minor separatrix loop correspond to
such motion. If the pendulum corotates with the coordi-
nate system, curves located outside the major separatrix
loop correspond to the motion of the pendulum. Horse-
shoe-shaped closed curves between the two separatrix
loops correspond to oscillations of the pendulum. The
oscillations occur around the elliptic point denoted as E in
Fig. 3b. Both the major and minor separatrix loops pass
through the hyperbolic point H. The circle C represents
the lower equilibrium of the pendulum. For the original
system, the unperturbed trajectory for J � J0 corresponds
to the circle C. The directions of motion are shown by
arrows in Fig. 3b.

The maximum distance between the two (major and
minor) separatrix loops is known as the width of the
nonlinear resonance (or the separatrix width). This quantity
can easily be estimated. According to Eqn (27), we have the
resonance width with respect to action

max �DJ� �
�����������������������������������
2eH 0

1

���� do�J0�dJ

����ÿ1
s

�30�

and the resonance width with respect to frequency

max �Do� �
���� do�J0�dJ

����max �DJ� �
������������������������������
2eH 0

1

���� do�J0�dJ

����
s

: �31�

We now find how much the above assumptions are
justified and determine the orders of magnitude of quantities
(30) and (31). It follows from expression (22) that H0 � H 0

1 .
But becauseH0 � J0o�J0�,

H0 � H 0
1 � J0o�J0� : �32�

a

a

Erot

Es
Eosc

J

C

O

b

O

H

C

E

Figure 3. (a) First-order nonlinear resonance in the variables a, J and (b) in
the variables specified by Eqn (28). Thin curves, phase oscillations; dot±

dashed curve, unperturbed trajectory �J � J0�; thick curve, separatrix [60].
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Therefore, with (30) and (31), we obtain

max �DJ�
J0

�
���
e
g

r
;

max �Do�
o�J0� � ����

eg
p

; �33�

where g � �do�J0�=dJ��J0=o�J0�� is the so-called nonli-
nearity parameter. In deriving system (25), we neglected
the term � e in Eqn (21) for _j. This can be done [see
Eqns (21) and (25)] if �dH 0

1 �J0�=dJ0�e5
��do�J0�=dJ��DJ, or,

in view of our estimate of the orders of magnitude, if
eH 0

1 =J0 5
��do�J0�=dJ��DJ. Therefore, in accordance with (32)

and (33), we find

g4 e : �34�

In addition, we replaced H 0
1 �J� with H 0

1 �J0�. This
substitution is equivalent to the condition Jÿ J0 5 1, or
DJ5 J0. As can be easily seen from relations (33), the last
inequality leads to inequality (34).

Retaining only the resonant term and neglecting the
nonresonant terms is allowed if other frequencies in expan-
sion (24) do not alter the dynamics qualitatively, i.e., if
o�J0�4

��do�J0�=dJ��DJ. Next, we use estimate (31) to obtain
the condition ge5 1, which is satisfied for small g and e. With
(34), we therefore have

e5 g5
1

e
: �35�

Inequality (35) is called the condition of moderate nonlinear-
ity [59, 60].

Thus, the above-presented approximate theory of non-
linear resonance is applicable if inequality (35) is satisfied.
Therefore, there is no limit transition to the linear problem
�g! 0�.

Resonance condition (20) can generally be satisfied at any
k0. In this case, all assumptions and formulas remain
unchanged. But because the phase is determined by the
expression j � k0aÿ nt� c, this leads to a garland of
separatrix loops. The number of such loops is k0. Therefore,
the number of elliptic±hyperbolic pairs of points is also equal
to k0 (Fig. 4).

4.4 Internal resonances
The above description of nonlinear resonance can easily be
generalized to systems with many degrees of freedom. For

n5 2, however, resonances between the degrees of free-
dom of the system itself, i.e., internal resonances, are
possible.

For clarity, we consider a system with two degrees of
freedom �n � 2�. The Hamiltonian of such a system can be
written as

H � H01�J1� �H02�J2� � eH1�J1; J2; a1; a2� ;

and the equations of motion are given by

_Jj � ÿe qH1

qaj
; _aj � q

qJj
�H01 �H02� � e

qH1

qJj
; j � 1; 2 :

According to relation (15), internal resonance occurs if the
condition ko1�J01� ÿmo2�J02� � 0 is satisfied for certain
integers k, m and certain values of the action variables J01,
J02. We retain only the resonant harmonic in the decomposi-
tion

H1 �
X
k;m

Hkm
1 �J1; J2� exp

�
i�ka1 ÿma2�

�
;

expand the functions H0j and oj � dH0j=dJj, j � 1; 2, in the
neighborhood of the resonance �J01; J02�, and use the above
approximations to obtain the equations of motion

_J1 � ekH 0
1 sinj ; _J2 � ÿemH 0

1 sinj ; �36�
_j � k

do1�J01�
dJ1

DJ1 ÿm
do2�J02�

dJ2
DJ2

and the universal Hamiltonian

�H � 1

2

do1�J01�
dJ1

�DJ1�2 � 1

2

do2�J02�
dJ2

�DJ2�2 � eH 0
1 cosj ;

where we use the notation DJj � Jj ÿ J0j, j � 1; 2,
H 0

1 exp �ic�� 2Hkm
1 �J01; J02��2

��Hkm
1 �J01; J02�

�� exp �ic�, and
j � ka1 ÿma2 � c.

It can be easily seen that multiplying the first equation of
system (36) by m and the second by k, and adding them, we
obtain an additional integral of motion mJ1 � kJ2 � const.
Therefore, Eqns (36) are integrable. But we can also proceed
differently. Differentiation of the equation for _j with respect
to time yields expression (29) with

O 2
0 � eH 0

1

����k 2 do1�J01�
dJ1

�m 2 do2�J02�
dJ2

���� :
If the quantities do1�J01�=dJ1 and do2�J02�=dJ2 have
different signs, the expression inside the modulus vanishes,
i.e., an additional degeneracy is possible in the system.

For systems with more than two degrees of freedom
�n5 3�, the number of additional integrals of motion is
larger, but the dynamics are still governed by an equation
similar to Eqn (29).

Thus, the ratio of frequencies plays an important role
in the analysis of nearly integrable systems: the incom-
mensurability of the frequencies typically determines a
quasi-periodic trajectory that densely covers the torus.
But a rational frequency ratio results in the emergence of
resonances and modifies the structure of invariant sur-
faces.

H

e O

Figure 4.Nonlinear resonance at k0 � 4, m0 � 1.
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4.5 Overlapping of resonances
Our analysis of nonlinear resonance was based on the
assumption that the quantity J [see Eqn (20)] remains fixed.
In other words, we assumed that only one isolated, primary
nonlinear resonance exists. But it follows from (19) that the
resonance relation can also be satisfied for other Jm,
m � 1; 2; . . . . In other words, there can be many primary
resonances in the system, and Eqn (20) at k0 � 1 must be
rewritten as o�Jm� � mn. Therefore, we can introduce the
distances between resonances: in action, dJm � Jm�1 ÿ Jm,
and in frequency, dom � o�Jm�1� ÿ o�Jm�. If all Jm are
sufficiently far from one another, i.e.,

dJm 4DJm ; �37�

where DJm is determined by Eqn (30), then the separatrices of
the resonances do not intersect and no interactions between
the resonances occur. If the initial conditions of the system are
in the domain of one of the resonances, the dynamics can be
described in the approximation where the effect of only this
resonance is taken into account. If the initial point is in the
domain between resonances, the system can be analyzed in
the framework of the nonresonance approximation [54, 64].

Similarly, we can formulate the condition of the absence
of frequency overlapping (interaction) of resonances:

dom 4Dom : �38�

We now assume that condition (37) or (38) is not satisfied
and the resonances are close to one another, such that the
corresponding separatrices can overlap.What happens in this
case, known as the case of strong interaction between
resonances?

We introduce the parameter K describing the degree of
resonance overlapping:

K � Do
do
� DJ

dJ
:

The overlapping parameter K was introduced by Chirikov to
characterize the dynamics of Hamiltonian systems [58] (see
also Refs [59, 65, 66]). If the interaction is weak, i.e., K5 1,
the motion in the system should be regular and the phase
trajectories should generally cover �nÿm�-dimensional tori
everywhere densely. But in the case of a strong overlapping,
K > 1, the dynamics of the system turn out to be very complex
and different from the dynamics in the periodic and quasi-
periodic regimes.

The validity of the criterion of the onset of irregular
motion based on the resonance-overlapping degree was
many times confirmed numerically (see Refs [54, 59, 62]). In
particular, Ref. [67] reported the origin of chaos with only two
resonances overlapping.

A specific property of this criterion is that it can relatively
simply be used to study particular systems. Indeed, it suffices
to apply the above technique in the neighborhood of only one
resonance in the approximation of the absence of all others.
This makes the resonance-overlapping criterion very con-
venient in practice. At the same time, it is not universally
applicable and in some cases requires more accurate formula-
tions [54, 59, 66].

4.6 Higher-order resonances
Up to this point, we have considered only primary reso-
nances. However, if the perturbation e is sufficiently large, so-

called secondary resonances, which modify or even comple-
tely destroy the integrals of the primary resonances, are
possible. A secondary resonance is the resonance between
the fundamental frequency of the unperturbed oscillation and
the frequencies of harmonics of the primary-resonance phase
oscillation. A specific feature of such a resonance is that
garlands of separatrix loops appear near the elliptic point
inside the primary resonance.

The small denominators of the secondary resonances can
be removed as this was done for the primary resonance (see
Ref. [54] for details). But such an approach has some specific
features when applied to secondary resonances. In particular,
the width of a secondary resonance depends on e much more
strongly than that of the primary resonance [� e 1=2, see
Eqns (30), (31)]. Therefore, secondary resonances are not
important at small e (in the case of small oscillations in the
primary resonance). But if the perturbations are sufficiently
strong, secondary resonances can affect the dynamics of the
system as strongly as the primary resonances do.

In addition to secondary resonances, higher-order reso-
nances are possible in systems; they can also substantially
affect the motion. Thus, on the whole, the behavior of the
system is highly involved and represents a hierarchy of very
complex structures. We describe such a structure when we
consider the dynamics near resonance separatrices. Our
analysis clarifies some issues related to the origin and nature
of dynamical chaos.

What is the structure of resonances near elliptic and
hyperbolic points? This question is directly related to the
nature of chaos.

5. Elements of the Kolmogorov ±Arnol'd ±Moser
theory

A nonlinear resonance indicates that even small perturba-
tions can substantially affect the dynamics of an integrable
Hamiltonian system. Resonances modify the topology of
phase trajectories and result in the formation of a chain of
islands in phase space. The perturbation theory cannot
describe such resonances, because regular solutions are
strongly disturbed near them, which entails the emergence of
small denominators and the divergence of series. This
problem was already noted by PoincareÂ , who called it a
fundamental problem of classical mechanics. However, it
was solved only in the early 1960s, with the advent of the
famous Kolmogorov ±Arnol'd ±Moser (KAM) theory [21 ±
25].

To emphasize the physical significance of the KAM
theory, we consider the problem of planetary motion around
the Sun in accordance with the law of gravity. If the mutual
influence of planets is neglected, we have a completely
integrable system: planets move in ellipses according to
Kepler's laws, and hence the dynamics of the system are in
general quasi-periodic. If the interaction of the planets is
taken into account, their orbits are deformed ellipses, which
precess slowly. The precession is maximum for Mercury. The
shift of its perihelion due to the influence of other planets 1 is
estimated to be � 53200 per 100 years [68].

In principle, the interaction of planets should be taken
into account using perturbative methods. But if resonances
occur, such techniques yield diverging series and therefore do

1 We emphasize that we consider only the Newtonian interaction.
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not provide information on the dynamics of the system over
long time intervals.

This planetary problem, reducible in the general case to
the well-known N-body problem, is among the most
important problems that have been raised in the course of
the development of both mathematics and physics. In 1885,
King Oscar II of Sweden and Norway, at the suggestion of
G Mittag-Leffler, established a prize for solving this
problem: ``Given a system of arbitrarily many mass points
that attract each other according to Newton's laws, try to
find, under the assumption that no two points ever collide, a
representation of the coordinates of each point as a series in
a variable that is some known function of time and for all of
whose values the series converges uniformly.'' (See Ref. [69]
for a more detailed exposition of this and some other
interesting points concerning the development of celestial
mechanics and nonlinear dynamics.) Thus, the principal
problem was not only to find a formal representation of
solutions of the N-body problem in the form of series but
also to prove their convergence. It is the latter issue that
presented the main difficulty.

Without dwelling on the history of the question, we only
note that the prize was awarded to PoincareÂ for his
inestimable contribution to the solution of the N-body
problem and related fundamental problems of dynamics.

Very much time was spent to realize that the problem
posed is not simple and solving it requires employing novel
powerful methods. Such methods were developed by the
authors of the KAM theory, A N Kolmogorov, V I Arnol'd,
and JMoser. The KAM theory not only permits constructing
a converging expansion procedure but also, most impor-
tantly, gives a key to understanding the nature of the onset
of chaos. In addition, this theory and its consequences proved
to be very important inmany areas of modern science, such as
pure and applied mathematics, mechanics, physics, and even
numerical analysis (!).

In recent years, substantial progress has been made in the
KAM theory, and it remains a field of very active research
(see Refs [53, 70, 71] and the references therein). This theory is
presented in a large number of reviews and monographs (e.g.,
Refs [70, 72 ± 76]). In Sections 5.1 and 5.2, we therefore
describe only some qualitative statements of this theory and
a number of its important consequences.

5.1 The Kolmogorov theorem
The famous Kolmogorov theorem (sometimes also called the
KAM theorem) is at the heart of the KAM theory. It states
that if a completely integrable system is perturbed suffi-
ciently weakly, most nonresonant tori are preserved and only
slightly deformed. In this case, the word `most' means that
all the resonant tori (corresponding to periodic motion) and
part of nonresonant tori collapse, but this set is small
compared to the set of nonresonant tori preserved under
the perturbation.

The applicability conditions of the KAM theorem are as
follows.
� The unperturbed Hamiltonian must satisfy the non-

degeneracy condition

det

���� qoi

qJk

���� � det

���� q2H0

qJi qJk

���� 6� 0 ; i � 1; 2; . . . ; n ;

which means that the frequencies of the unperturbed system
are functionally independent.

� The perturbation must be smooth, i.e., the Hamiltonian
H1 must have a sufficient number of derivatives.
� The system must be outside the neighborhood of a

resonance, i.e.,����X
j

kjoj

���� > cjkjÿr ; k � �k1; k2; . . . ; kn� ; �39�

where r depends on the number of the degrees of freedom n
and the constant c is determined by the magnitude of the
perturbation eH1 and the nonlinearity parameter g. We note
that the condition of moderate nonlinearity (35) can be
obtained from inequality (39).

If the above conditions are satisfied, the meaning of the
KAM theory is as follows. For most initial conditions, quasi-
periodic dynamics are preserved in a nearly integrable system.
However, there are initial conditions at which (mainly
resonant) tori existing for e � 0 break down and the motion
becomes irregular. Precisely these tori break down under the
perturbation and bring the system to chaos. This is why the
theory of nonlinear resonance plays such an important role.
The trajectories that originate in the region of destroyed tori
can freely move in the energy space, which is manifested on
the section surface as numerous randomly scattered points.
Such trajectories turn out to be exponentially unstable with
respect to small perturbations.

At small e, interestingly, the tori remote from the
resonance are preserved in the presence of arbitrary smooth
perturbations. But the situation changes dramatically with
increasing e: the tori start breaking down and the domain of
chaos starts expanding. Ultimately, this results in an over-
lapping of primary resonances and the onset of the phenom-
enon known in Hamiltonian mechanics as global chaos [54].
As global chaos occurs, no tori that were close to the tori in
the unperturbed problem remain in the system, although
some other tori can appear. The phase trajectory can move
transversally to the chaotic layers in such a system.

However, at e5 1, resonances do not overlap and the
solutions lie on weakly deformed invariant tori. There is a
qualitative difference in dynamics between systems with two
degrees of freedom and those with more �n > 2� degrees of
freedom.

5.2 The Arnol'd diffusion
In the case of two degrees of freedom, the phase space is four-
dimensional, the energy hypersurface (or energy-level space)
H � E is three-dimensional, and the invariant tori are two-
dimensional. Therefore, such tori can be represented as
energy levels H � E immersed in the three-dimensional
space of the energy level H � E (see Fig. 2). Therefore, the
tori divide this space into disconnected domains. Thus, the
destroyed tori turn out to be sandwiched between the tori
preserved under the perturbation. The phase trajectory that
originates at the location of such a destroyed torus (i.e., in the
gap between two invariant tori) remains locked there forever.
This means that the corresponding action variables are
almost unchanged and remain near their initial values in the
course of motion. Therefore, for systems with two degrees of
freedom satisfying the conditions of Kolmogorov's theorem,
for any initial conditions, no evolution occurs and global
stability is preserved [72].

If n > 2, invariant tori no longer divide the �2nÿ 1�-
dimensional energy hypersurface into nonintersecting parts.
In such systems, the dynamics are quasi-periodic for most
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initial conditions. But there exist initial conditions at which
the action variables recede slowly from their initial values.
This can be easily understood from the fact that, at n > 2, the
domains of destroyed tori merge, forming a cobweb. The
phase point on the hypersurface of a given energy, moving
along the threads of this cobweb, can approach any point of
this hypersurface arbitrarily close. As investigations show,
such an evolution of the action variables is random. This
random walk over resonances around invariant tori is called
the Arnol'd diffusion [54, 60, 70, 72].

Thus, small perturbations in systems with more than two
degrees of freedom not only qualitatively modify the
dynamics of the system but also can change the topology of
phase trajectories, transforming them into a connected web.

A characteristic feature of the Arnol'd diffusion is its
universality in the sense that no critical value of the
perturbation e necessary for the onset of such diffusion
exists. In other words, diffusion always occurs, even at
arbitrarily small e. Obviously, the diffusion rate vanishes at
progressively reduced perturbations. Therefore, for Hamil-
tonian systems with n > 2 degrees of freedom, the action
variables can evolve slowly, which corresponds to lacking
global stability. In the general case, this evolution is fairly
slow and can be different in different parts of the phase
space.

Another peculiarity of systems in which the Arnol'd
diffusion is inherent consists in that their dynamics cannot
exhibit a sudden transition to global chaos, which originates
due to the overlapping of resonances. This is because regions
with chaotic behavior in such systems are already unified into
a web. In addition, the Arnol'd diffusion is very slow
compared to the motion of trajectories in the region of global
chaos.

The existence of diffusion trajectories was rigorously
proved for the first time for a nonlinear Hamiltonian system
of a special form [77]. There is no proof of the merging of
chaotic trajectories into a web in the general case; however,
fairly numerous examples are known in which this phenom-
enon is observed (see Refs [54, 59, 78 ± 81]). The exact upper
bound of the Arnol'd diffusion rate was obtained in Ref. [82]
(see also Ref. [53] and the references therein). Various cases of
diffusion, the accompanying physical phenomena, and
estimates of the diffusion rate for various systems are
discussed in monographs [53, 54].

We now consider the breakdown of the resonant tori and
the origin of chaos in greater detail.

6. The nature of chaos

The issue of the nature of chaotic behavior traces back to
the famous problem of intersection of separatrices in
dynamical systems. This phenomenon was discovered long
ago by PoincareÂ when he was studying the three-body
problem [83]. But to understand the origin of chaos in
systems of classical mechanics, the well-known PoincareÂ ±
Birkhoff fixed-point theorem [13, 84] should also be invoked
(the mathematics of the issue can be surveyed using
monograph [85]).

6.1 Twist map
We consider a systemwith two degrees of freedom, n � 2, and
a Hamiltonian H�q1; p1; q2; p2�, although the results pre-
sented below can be generalized to the multidimensional
case. In such a system, H is the total energy. Therefore, at a

given value of H � E, the flow is always three-dimensional.
This allows considering the corresponding PoincareÂ map
instead of the continuous evolution of the system. Such a
map can easily be constructed analytically.

For an integrable system in the angle ± action variables,
the phase space is a set of nested tori.Wewrite the flow on one
of them as

a1�t� � o1t� a1�0� ; a2�t� � o2t� a2�0� ;

where o1 � o1�J1; J2� � qH=qJ1 and o2 � o2�J1; J2� �
qH=qJ2. Obviously, a complete revolution along the a2
coordinate takes the time t2 � 2p=o2. By this time, the a1
variable becomes

a1�t� t2� � a1�t� � o1t2 � a1�t� � 2po1

o2
� a1�t� � 2pr�J1� :

The quantity r � o1=o2 introduced here is called the rotation
number. Because motion occurs in the energy-level space,
J2 � J2�J1;E�. Therefore, at a given E, the rotation number r
is a function of J1 only.

We now assume that the surface of a section is the plane
�a1; J1�, i.e., a2 � const. Then, for the intersection points xk
between the phase trajectory and this plane (Fig. 5a), we can
write xk �

ÿ
a1�t� kt2�; J1

�
. Thus, solutions of the original

system on the given torus can be represented as the map P0

that takes an intersection point xk into the point xk�1 next in
the invariant circle of `radius' J1. With the notation
Jk � J1�t� kt2�, it is possible to write such a displacement
of points as

P0 :
ak�1 � ak � 2pr�Jk� ;
Jk�1 � Jk :

�
�40�

As can be seen from (40), the rotation number r depends on
the radius of the circle in general.

If r is irrational, then the points xk fill the entire circle as
k!1. If r � l=m is rational, the points xk map into one
another successively, eachm steps (Fig. 5b). Therefore, if this
representation is used, we can speak of nonresonant and
resonant circles.

As we pass from one circle to another, the rotation
number changes. To be specific, we assume that r�J�
increases with increasing J. Then, as the origin of coordinates
recedes, the angle through which the circle is rotated increases
on average. This results in a twist of the radial line of points
under the action of P0. For this reason, transformation (40) is

b

xk�2
xk�1

xk
J

aa2

a1
J1

J2

xk

a

Figure 5. A system with two degrees of freedom (a) and its PoincareÂ

map (b).
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called the rotation map (or sometimes the twist map). In the
general form, it can be written as

P0�C� � C :

An important property of themapP0 is that it is conservative.
We now consider perturbed system (9) with Hamiltonian

(8). In the PoincareÂ section, taking the perturbation into
account corresponds to adding new terms to the twist map:

Pe :
ak�1 � ak � 2pr�Jk� � ef �Jk; ak� ;
Jk�1 � Jk � eg�Jk; ak� ;

(
�41�

where f and g are functions periodic in a. As before, the
transformation Pe must preserve the area; otherwise, invar-
iant circles do not exist, as a rule. According to the KAM
theory, under a small perturbation, e5 1, most circles with
irrational r are preserved, being only slightly deformed. We
consider the behavior of the circles in the domain of rational,
or resonant, values r � l=m, for which relation (39) is not
valid. It is in this domain, as we already noted, chaotic motion
originates.

6.2 Fixed-point theorem
We temporarily return to the integrable case. At r�J� � l=m,
any point of the circle returns to its initial position after m
steps, i.e., it is periodic with the periodm. We let C denote this
resonant circle and consider two nonresonant invariant
circles C� and Cÿ on both sides of C (Fig. 6a). Because r�J�
increases with J (see Section 6.1.), the irrational rotation
numbers of such circles satisfy the respective inequalities
r > l=m and r < l=m. After applying the map P0 m times
(with the iterated map denoted by Pm

0 ), the points of the circle
C� are rotated through an angle larger than 2p and the points
of the circle Cÿ through an angle smaller than 2p. It therefore
appears that relative to C, the mapwinds C� counterclockwise
and Cÿ clockwise (Fig. 6a).

We now consider perturbed map (41). According to the
KAM theory, the circles C� and Cÿ are preserved and only
slightly deformed under the perturbation. Such closed circles,
respectively denoted as C�e and Cÿe , are invariant under the
transformation Pe:

Pe�C�e � � C�e ; Pe�Cÿe � � Cÿe :

We assume that the parameter e is sufficiently small for the
relative rotation of C�e and Cÿe to be preserved under the
action of Pm

e . Then, at any radius a � const between the
curves C�e and Cÿe , a point Jp�a; e� can be found such that the

map Pm
e rotates its angular coordinates exactly through 2p.

Therefore, the angular coordinates of this point are preserved
under Pm

e . At each radius issuing from the center, only one
such point is located. Because the perturbation Pe is smooth,
these points Jp�a; e� form a certain closed curve Ge (Fig. 6b)
that shrinks to C as e! 0. The curve Ge is not invariant under
Pe. The action of Pm

e amounts to radially shifting each point
of Ge. Thus, a new curve Pm

e �Ge� is formed instead of Ge

(Fig. 7a).
Next, we recall that the mapPe is conservative. Therefore,

both curves Ge and Pm
e �Ge� must confine equal areas. Hence,

the curve Pm
e �Ge� can be neither inside nor outside the curve

Ge. Therefore, these curves must in general intersect 2 at an
even number of points (Fig. 7a). In turn, each of these
intersection points is fixed under the perturbed transforma-
tion Pm

e .
This is the principal meaning of the PoincareÂ ± Birkhoff

fixed-point theorem [13, 84], according to which the
perturbed twist map (41) with the rotation number r � l=m
has 2im, i � 1; 2; . . . ; fixed points. Thus, as the resonant circle
is perturbed (we recall that any point of this circle is fixed
under the transformation Pm

0 ), only an even number 2im of
fixed points is preserved.

We consider one of the points, p, of intersection between
the curves Ge and Pm

e �Ge� (Fig. 7a). It is fixed under the map
Pm
e . The transformation Pe acting on p generates a sequence

of points p;Pep;P
2
e p; . . . ;Pmÿ1

e p; after m iterations, the point
p returns to its initial position. On the other hand, each of
them is a fixed point for Pm

e . Thus, there are m fixed points
associated with the original point p. Because the curvesGe and
Pm
e �Ge� intersect at an even number of points, we have a total

of 2im fixed points.

6.3 Elliptic and hyperbolic points
A detailed consideration of the map Pe in the neighborhood
of various points p reveals the following qualitative differ-
ence. Points neighboring some points p remain near them and
appear to rotate around them, while points located near other
p tend to leave their neighborhood. Points of these two sorts
alternate (Fig. 7b). Similar motion is observed in the phase
space of a nonlinear pendulum (see Section 3.1). For this
reason, such points are respectively called elliptic and
hyperbolic. Elliptic points are surrounded by a family of
closed trajectories that are invariant under Pm

e and form
`islands'; hyperbolic points are connected by separatrices.
This pattern is typical of weakly perturbed nonlinear systems,
and it always emerges near a resonance.

Each island satisfies the KAM theory. Therefore, most
nonresonant circles are preserved. But resonances are also

C

Cÿ

C� a C�e

Cÿe

Jp

Ge

b

Figure 6. (a) Invariant circles C, C�, and Cÿ of the unperturbed twist map

P0 for r � l=m, r > l=m, and r < l=m, respectively. (b) The result of the

action of the perturbation Pe.

aC�e

Ge

Pm
e �Ge�

Cÿe

b
C�e

Ge

Pm
e �Ge�

Cÿe
p

Figure 7. (a) Transformation of the curve Ge into the curve Pm
e �Ge� under

the action of the map Pe and (b) elliptic and hyperbolic points arising in

this case.

2 We do not consider the exceptional case of tangency.
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present here. According to the PoincareÂ ± Birkhoff fixed-
point theorem, a sequence of alternating elliptic and hyper-
bolic points appears in the neighborhood of each resonance,
although on a smaller scale (Fig. 8). In turn, an island near
each of these elliptic points reproduces the entire pattern in
miniature. Closed curves in the neighborhood of elliptic
points correspond to minor tori. According to the KAM
theory, some of theseminor tori are preserved; others collapse
into smaller ones due to higher-order resonances, and so on,
to infinity. Thus, the resonance results in a very complex
pattern, which repeats itself on progressively smaller scales,
thus being, in a certain sense, self-similar.

Following Refs [72, 86], we now consider the phenomena
in the neighborhood of hyperbolic points. Each of these
points is characterized by four invariant directions (or
separatrix branches): two stable ones �w s�, which enter the
hyperbolic pointH, and two unstable ones �w u�, which issue
from H (Fig. 9). Because we are considering the PoincareÂ
map, these curves correspond to surfaces, or invariant
manifolds, either stable �W s� or unstable �W u�, in the
original phase space.

The oscillation period is infinite at the separatrix. There-
fore, if some point q belongs to the stable branch w s, it
approaches H exponentially slowly under the action of the
map P, i.e.,

lim
k!1

Pkq! H :

But if q 2 w u, it leaves the neighborhood of H exponentially
slowly, i.e.,

lim
k!1

Pÿkq! H :

6.4 Splitting of separatrices. Homoclinic tangles
In the case of an integrable system, stable and unstable
manifolds of hyperbolic points can be connected to one

another, forming smooth structures. In a PoincareÂ map,
such a structure appears as a smooth transition from an
unstable to a stable separatrix branch. Separatrix branches
can either close to the same hyperbolic point (Fig. 10a) or
connect several such points, forming garlands (Fig. 10b). In
the first case, a stable �w s� and an unstable �wu� separatrix
branch forms a loop. This loop, known as a homoclinic loop,
is a doubly asymptotic trajectory with the property that any
point q on such a loop always approachesH, i.e.,

lim
k!�1

Pkq! H :

An elliptic point exists inside the homoclinic curve.
In the second case, the curves consisting of stable and

unstable separatrix branches are called heteroclinic trajec-
tories. The motion along such trajectories implies exponen-
tially slow recession from one hyperbolic point and approach
to another.

If a perturbation is present, the separatrix branches no
longer form smooth homoclinic and heteroclinic junctions
but can intersect. The point of the intersection of a stable and
an unstable separatrix branches of the same resonance is
called a homoclinic point. If a stable and an unstable branch
of different hyperbolic points (resonances) intersect, a
heteroclinic point appears. We now consider how such points
evolve under the action of the map Pe.

Let q be a homoclinic point and q 0 2 w s and q 00 2 w u be its
neighboring points (Fig. 11a). Under the action of Pe, the
points q 0 and q 00 must be mapped into the points Peq

0 and
Peq

00. Where should we find the point Peq into which q is
mapped by Pe? As can be seen from Fig. 11a, taking the
directions of motion in the stable and unstable branches into
account, q is located before the points q 0 and q 00. Therefore,
becausePe is continuous, this point must be taken into a point
that is also located before the points Peq

0 and Peq
00. This

means that a new intersection, i.e., a new homoclinic point
Peq, must arise (Fig. 11b).

Figure 8.Destruction of tori with rational frequency ratios and the origin

of a self-similar structure.

w s

wu

w s

wu

H

a

b

W u

W s

w s

w u

w s

w u

H

Figure 9. Stable �w s� and unstable �w u� directions of a hyperbolic pointH
in the PoincareÂ map (a) and the corresponding manifolds W s and W u in

the phase space (b).

H1

b

H3

H2

H

a

Figure 10. A homoclinic (a) and a heteroclinic (b) trajectory formed by

separatrix branches.

Peq
00

q 00

q 0

q

w s

wu

H

Peq
0

a

Peq
00q 00

q 0
q

w s

wu

H

Peq
0

Peq

P 2
e q

b

Figure 11.Mapof neighboring points q 0 and q 00 and the formation of loops

from separatrices.

September, 2007 Dynamical chaos: systems of classical mechanics 951



In other words, because the branches w s and w u are
invariant, we should remain at both separatrix branches
under the action of the map. Therefore, a new intersection
point Peq emerges, and a loop forms between the points q and
Peq.

By similar considerations, we can easily find that the point
Peq is mapped into the point P 2

e q, forming another loop
(Fig. 11b). Because the new point P 2

e q is closer to the
hyperbolic point H, the distance between P 2

e q and Peq is
shorter than the distance between Peq and q. We recall that
the conservation of phase volume is a property of the map Pe.
Thismeans that the areas confined by the loops between q and
Peq and between Peq and P 2

e q must be equal. Therefore, the
second loop is more stretched and curved than the first one.

Continuing our considerations leads us to the conclusion
that an infinite number of intersections of separatrix branches
eventually arise, which become progressively closer, and the
loops themselves become longer and thinner (Fig. 12a). The
stable separatrix branch w s behaves similarly (Fig. 12b). This
can easily be understood if we move along w s in the opposite
direction. Thus, the pattern in the neighborhood of hyper-
bolic points is on the whole extremely complex (Fig. 12c).

For heteroclinic trajectories, the intersection of separa-
trices results in the formation of somewhat different struc-
tures. The unstable branch w u issuing from the hyperbolic
point H1 oscillates in approaching a hyperbolic point H2

located on the right. In contrast, the stable point w s oscillates
in receding from H1 (Fig. 13). The stable and unstable
branches located in the bottom part of the figure (not shown
in full) behave similarly.

Thus, due to a perturbation introduced into the integrable
system, the separatrices are no longer smooth, as in Fig. 10,
but split in an intricate manner. This phenomenon is termed
the splitting of separatrices. The structures formed by
separatrix branches in the domain of hyperbolic points are
called homoclinic and heteroclinic tangles. It is such complex
behavior of separatrices that gives rise to chaos in determi-

nistic systems. Invariant tori cannot exist in the domain of
homoclinic tangles. There, the systems are not integrable,
exhibit the property of the exponential instability of trajec-
tories under small perturbations, and therefore behave
chaotically. However, at some different initial conditions
from the neighborhood of the surviving tori, the dynamics
of the system are regular.

We can now imagine the entire pattern arising in phase
space and in the PoincareÂ section of the set of invariant tori.
The destruction of resonant circles under perturbations is
accompanied by the occurrence of 2im hyperbolic and elliptic
points. In the neighborhood of each elliptic point, a family of
closed invariant curves is present, and some of them are also
destroyed by the perturbation. This leads to a smaller chain of
elliptic and hyperbolic points. In the neighborhood of each
hyperbolic point, the separatrices split, their tangles appear,
etc. (Fig. 14a).

However, all this occurs not in the PoincareÂ section but in
the phase space formed by a set of tori. Thus, the general
pattern of motion of the phase trajectories turns out to be
highly involved (Fig. 14b). This structure repeats itself on
progressively smaller scales and is typical of nearly integrable
systems.

As the perturbation increases, some nonresonant circles
also break down. But if the perturbation H1 is small, chaotic
trajectories exist only in the phase-space domain bounded by
invariant curves.

An elementary exposition of the foundations of the
theory, the questions concerning the physical aspects of
separatrix intersection, and a historical background are
given in monograph [69]. A rigorous presentation of related
topics is made in Refs [53, 72, 86, 88]. The fixed-point
theorem, its qualitative description, and some applications
can be found in book [13]. Mathematical approaches to the
problem of separatrix intersection are presented in Refs [32,
63, 71, 88 ± 90].

7. The Mel'nikov method

The distance between separatrices can be estimated analyti-
cally and the conditions for the onset of homoclinic and
heteroclinic chaos can be obtained using the Mel'nikov's
theory [91] (see also Refs [54, 63, 88, 89]).

To simplify the presentation, we consider a two-dimen-
sional autonomous system with a periodic external perturba-
tion

_x � f0�x� � ef1�x; t� ; �42�

[where x � �x1; x2�, f0 � � f01; f02�, f1 � � f11; f12�, and
f1�x; t� � f1�x; t� T �] that has a unique hyperbolic

a b c

Figure 12.Homoclinic tangles in the neighborhood of a hyperbolic point.

w s

H1 H2
w s

w s

w s

w s
wu

wu

wu

wu

wu

Figure 13. Formation of heteroclinic tangles.

b
a

Figure 14. Structure of the phase space of perturbed Hamiltonian systems

with two degrees of freedom: (a) in the PoincareÂ map and (b) in the phase

space [87].
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pointH0. We assume that the unperturbed system �e � 0� has
a homoclinic loop w0�t� (Fig. 10a),

lim
t!�1

w0�t� � H0 :

The perturbation results in splitting this loop, such that the
incoming �w s

0� and outgoing �w u
0 � branches no longer form a

single curve.
To find the condition of the presence of chaos, it is

necessary to perturbatively calculate the distance D�t; t0�
between the branches of the separatrix at some instant t0.
Then, ifD�t; t0� does not change its sign, the branches w s

0 and
w u
0 do not intersect. But if the sign ofD�t; t0� changes at some

t0, homoclinic tangles appear (Fig. 12c) and chaotic motion
sets in. This is considered formally in Section 7.1.

7.1 The Mel'nikov function
The method proposed in Ref. [91] is based on a compar-
ison of first-order terms in the expansion of separatrix
solutions into series in the perturbation parameter e. In
other words, to calculate D�t; t0�, it is sufficient to find a
stable branch w s and an unstable branch w u in the first
approximation.

Let w s; u�t; t0� � w0�tÿ t0� � ew s; u
1 �t; t0�. Then, using

Eqn (42), we obtain, in the first order in e,

dw s; u
1

dt
� M̂�w0�w s; u

1 � ef1
ÿ
w0�tÿ t0�; t

�
; �43�

where M̂�w0� is the Jacobi matrix

M̂�w0� �
qf01
qx1

qf01
qx2

qf02
qx1

qf02
qx2

0BB@
1CCA

taken at the unperturbed homoclinic trajectory w0�tÿ t0�.
If a perturbation is introduced into an integrable system,

the original hyperbolic point H0 displaces to a point Hp.
Then, obviously, the stable and unstable branches satisfy the
relation

lim
t!1w s � lim

t!ÿ1w u � Hp :

We introduce the vector

d�t; t0� � w s�t; t0� ÿ w u�t; t0� :

In the first approximation, d�t; t0� � w s
1�t; t0� ÿ w u

1 �t; t0�.
According to Ref. [91], the distance D�t; t0� between the
stable and unstable branches of the separatrix is defined as
the projection of d onto the normalN to the unperturbed loop
w0 at the instant t (Fig. 15):

D�t; t0� � Nd : �44�

At e � 0, using Eqn (42), we can determine the vectorN to
be

N�t; t0� � ÿf02�w0�
f01�w0�

� �
:

If we introduce the operator ^ by the relation
x ^ y � x1y2 ÿ x2y1, Eqn (44) can be represented in a simpler

form as D�t; t0� � f0 ^ d. We rewrite this expression as

D � D s ÿD u ; �45�

where D s; u�t; t0� � f0 ^ w s;u
1 . Now, differentiating D s

with respect to time yields _D s � _f0 ^ w s
1 � f0 ^ _w s

1 �ÿ
M̂�w0� _w0

� ^ w s
1 � f0 ^ _w s

1. Therefore, because _w0 � f0, it
follows from (43) that

_D s � _f0 ^ w s
1 � f0 ^ _w s

1 �
ÿ
M̂�w0� f0

� ^ w s
1

� f0 ^
ÿ
M̂�w0�w s

1

�� f0 ^ f1

or

_D s � Sp M̂�w0�f0 ^ w s
1 � f0 ^ f1 � Sp M̂�w0�D s � f0 ^ f1 :

�46�
Asymptotically, we have the distance

D s�t; t0�
��
t!1� f0�H0� ^ w s

1 � 0 :

If the unperturbed system is weakly dissipative, Sp M̂ � 0.
Therefore, integrating Eqn (46) over the semi-interval �t0;1�,
we obtain

D s�t0; t0� � ÿ
� �1
t0

f0 ^ f1 dt :

Similarly, for D u we find that

D u�t0; t0� �
� t0

ÿ1
f0 ^ f1 dt :

Because the sought function D is determined by Eqn (45), we
finally obtain

D � ÿ
�1
ÿ1

f0 ^ f1 dt : �47�

The obtained function (sometimes called the Mel'nikov
function) describes the splitting of separatrices of a hyper-
bolic point due to the introduction of a small perturbation
into an integrable system. If function (47) is sign-alternating,
the stable and the unstable branches intersect forming
homoclinic tangles, which results in the onset of chaotic
dynamics.

Despite its relative simplicity, the Mel'nikov method has
proven itself in applications (in particular, to weakly dis-
sipative systems). Moreover, for certain problems, it is
possible to calculate integral (47) analytically and compute
the threshold of the onset of chaos.

7.2 The Duffing oscillator and nonlinear pendulum
As the first example of using the above analytic approach and
estimating its accuracy, we consider two models that are used

w0

H0
Hp

wu�t; t0�

w s�t; t0�

N�t; t0�d�t; t0�

Figure 15. Determining the distance between the separatrix branches,

D�t; t0� � Nd [54].
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to test various applications of the methods of analytic
treatment of nonlinear systems: the Duffing oscillator [92]
and a nonlinear pendulum with dissipation and periodic
excitation.

The Duffing oscillator is a system with two stable
equilibrium states divided by a single separatrix and with
excitation. The equation describing such a system is called the
Duffing equation:

�x� d _xÿ x� x 3 � g cosot : �48�

Equation (48) has been comprehensively studied, on the one
hand, numerically and analytically and, on the other hand,
experimentally (see, e.g., Refs [88, 93 ± 95] and the references
therein).

At d � 0, Eqn (48) always has chaotic solutions near the
separatrix, which are bounded by invariant curves. In the
dissipative case, no such curves exist, and hence, with the
passage of time, a chaotic trajectory finds its way to the
attraction region of a stable focus or limit cycle. In this case,
transient chaos is observed in the system.

The Mel'nikov function for Eqn (48) can be estimated
without difficulty (see Ref. [96]). We rewrite Eqn (46) in
a different form, _x � y, _y � xÿ x 3 ÿ dy� g cosot. The
unperturbed Hamiltonian is then given by H0 �
y 2=2ÿ x 2=2� x 4=4. The equations of motion at the separa-
trix can be written as [96]

x0�t� �
���
2
p

cosh t
; y0�t� � ÿ

���
2
p sinh t

cosh2 t
:

Using these relations, we next find f0 ^ f1 � y0�g cosotÿ dy0�.
The integral of this function can be analytically calculated as

D�t0� �
���
2
p

pgo
sinot0

cosh �po=2� �
4

3
d :

Hence, the condition of intersection of separatrices can be
written as

d < dc � 3
���
2
p

pgo
4 cosh �po=2� : �49�

A generalized Duffing equation is also often considered; it
describes an oscillator with a parametrically perturbed cubic
term,

�x� d _xÿ x� b�1� Z cosOt�x 3 � g cosot ; �50�
where Z5 1 is the amplitude and O is the frequency of the
parametric perturbation. This equation is interesting because
it has two excitation frequencies, o and O.

TheMel'nikov function for Eqn (50) can be written as (see
Ref. [97])

D�t0� � ÿA sinot0 � B sinOt0 � C ;

where

A � pkgo sech
po
2
;

B � 1

24
pbZk 4O 2�4� O 2� cosech pO

2
;

C � 2

3
k 2d ; k �

����
2

b

s
:

If o � O, the values of d at which D can change sign can be
explicitly written as

d < dc � 3

2k 2
jBÿ Aj : �51�

For o 6� O, we must additionally consider the cases of
commensurate and incommensurate frequencies o and O. In
the former case,

d < dc � 3�A� B�
2k 2

:

For incommensurate frequencies (see Ref. [98]),

3

2k 2
jAÿ Bj < dc <

3

2k 2
�A� B� :

For a nonlinear pendulum that obeys the equation
�x� a _x� sin x � g cosot, the Mel'nikov function can also
be calculated analytically [56, 57],

D�t0� � ÿ4aB
�
1

2
; 1

�
� 2pg cosot0

cosh po=2
;

where B�r; s� is the Euler b function. Based on this, the
threshold of the onset of chaotic motion can also be
determined.

As found in Refs [56, 96, 98], the obtained analytic results
agree very well with numerical estimates based on calcula-
tions of the maximal Lyapunov exponent. For example, at
b � 8, g � 0:114, Z � 0:03, and o � O � 1:1 [see Eqn (50)],
we obtain dc � 0:3798 from (51). A numerical analysis yields
dc � 0:378 as the threshold of the onset of chaos.

Thus, in some cases, the Mel'nikov method allows
analytically determining the threshold of the onset of chaos,
in particular, for multidimensional systems [99]. We empha-
size, however, that this is a local criterion that can be used in
the neighborhood of unperturbed separatrix loops.

8. Principal properties of chaotic systems

We now describe important properties inherent in chaotic
systems: unpredictability, irreversibility, and decay of corre-
lations. However, we start by introducing the concept of
mixing.

8.1 Ergodicity and mixing
We assume that the trajectories of a dynamical system are
localized in a certain bounded domain D of the phase space.
The motion of the dynamical system is said to be ergodic (or
the dynamical system is called ergodic) if, for an arbitrary
integrable function h�x�, at almost all initial conditions x0, the
temporal and phase averages of h�x� coincide:

lim
T!1

1

T

� T

0

h�F tx0� dt �
�
�D�

h�x� dm ;
�52�

m�D� �
�
�D�

dm � 1 :

Thus, if the motion of a conservative system is ergodic, a
phase trajectory, with the passage of time, uniformly and
densely covers the hypersurface specified by all integrals of
motion in the n-dimensional phase space. A characteristic
property of the ergodic motion of aHamiltonian system is the
invariance of the shape of a small domain. As time passes,
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such a domain simply moves over the torus intersecting each
of its segments infinitely many times.

It is obvious, however, that `ergodic' does not necessarily
mean `chaotic.' In addition, the motion of a chaotic system
must also be locally unstable, which corresponds to the
presence of homoclinic and heteroclinic tangles. Because of
such an instability, an initial elementary volume, moving over
the entire energetically accessible hypersurface (as for ergodic
flows), undergoes strong deformations with time. Such
systems are called systems with mixing.

The concept of mixing is very simple in essence. For
illustration, we consider Gibbs's classic example. We assume
that a vessel contains 30% ink and 70%water and these fluids
are not mixed at the initial instant. We then thoroughly shake
the contents of the vessel. It is natural to expect that some time
later (after the mixing time has elapsed), any portion of the
obtained mixture will consist of 30% ink and 70% water.
Formalization of such a process leads to the concept of
mixing.

We consider two arbitrary domains A and B with
measures m�A� and m�B� inside the domain D �M and
assume that the domain B remains motionless, while the
domain A evolves under the action of the transformation F t:
At � F tA (Fig. 16). Let At

T
B be the collection of all parts of

At that were at inside the motionless domain B at an instant t.
Dynamical system (1) is called a system with mixing (and,
accordingly, the phase flow F t is said to be mixing) if there
exists the limit

lim
t!1

m
ÿ
At

T
B
�

m�B� � m�A� : �53�

We clarify the meaning of this definition. First, we recall
that because the considered motion is conservative, the
measure of the domain A is preserved in the course of
motion, i.e., m�At� � m�A�. Moreover, m�A� � m�At�=m�D�
is the relative volume occupied by the domain A in D. At the
same time, the ratio m

ÿ
At

T
B
�
=m�B� is the relative volume of

the domain B occupied by the pieces of At that found their
way there by time t. It follows from definition (53) that these
two ratios coincide as t!1, irrespective of the sizes,
shapes, and mutual positions of the domains A and B.

Amixing flow arises if phase-space points that are close to
one another initially move in exponentially diverging trajec-
tories. This fact was noted long ago by EHopf as he analyzed
motion on a negative-curvature manifold [100]. It can be
easily understood that mixing is inherent in dynamical
systems in the domain of homoclinic and heteroclinic tangles.

Mixing implies ergodicity. But the converse is not true:
ergodicity does not imply mixing. Therefore, mixing is a
much stronger property than ergodicity. If mixing occurs in

a system, its behavior can naturally be considered chaotic.
Moreover, the property of mixing has three very important
consequences observed in natural systems Ð unpredictabil-
ity, irreversibility, and decay of temporal correlations.

8.2 Unpredictability and irreversibility
The unpredictability and irreversibility of the temporal
evolution of systems described by reversible dynamic equa-
tions (e.g., Hamiltonian equations) can be described based on
the concepts of mixing and openness.

As is known, because of unavoidable fluctuations and
external perturbations, the state of any physical system can be
known only to a certain finite accuracy. This can be
interpreted as the distribution of initial conditions x0 in
some domain Oe � D with a characteristic size e. Then, if the
system has the property of mixing, such an initial distribution
spreads over the entire domainD as t!1. In other words, if
the position of a phase point is initially known to a finite
accuracy (i.e., we only knew at t � 0 that this points belonged
to a certain region Oe), it is impossible to predict the position
of this point after a sufficiently long lapse of time. Thus,
unpredictability originates in systems with mixing. The
sensitivity of the system to initial conditions (their small
perturbations) plays a crucial role here.

If an isolated Hamiltonian system is ergodic, then it
passes through all energetically possible states in the course
of time and its phase trajectory visits all accessible domains
of the phase space. The time of residence in a given domain
is then proportional to the volume of this domain. As
t!1, any of these states is observable. If the number of
the degrees of freedom of the system is sufficiently large,
then the time in which the system reaches a certain
particular state (assumed to be the initial one) can be very
long. This obviously implies the irreversibility of closed
systems with very many degrees of freedom. This explana-
tion of irreversibility is now generally accepted (see also
Refs [101, 103] in this context).

For low-dimensional open systems, external fluctuations
play an important role in the emergence of irreversibility. If
mixing occurs in the system, then, inside any accessible part of
a domain D in the phase space M, parts of various initial
domains A � D find themselves after the lapse of a suffi-
ciently long time (see Fig. 16). Therefore, if we only know that
the particle is located at a finite time within a small domain
with a size of the order of e, we cannot indicate where it was at
the initial time. In other words, the openness and, therefore,
the unavoidable inaccuracy in determining the current state
of the system play an important role in this case.

It can be easily seen that there is no contradiction with
the existence of reversible equations of motion that describe
motion with mixing (i.e., random motion, in a sense). The
point is that irreversibility is related to coarsening or
rounding of some quantities. In this case, part of the
information contained in the exact solution is lost from the
very beginning. The state of such a system can only become
progressively less definite with its motion. For this reason,
describing chaotic systems immediately necessitates using a
coarsened analysis.

Thus, the concept of mixing corresponds to our intuitive
idea of systemswith complex and irregular regimes ofmotion.
But not all chaotic motion must be mixing. Definition (53)
imposes a number of strict limitations that are not always
satisfied in reality.

D

B B
B

t � t0 t � t1 t � t2

D D

At2
At1At0

Figure 16. Evolution of a small domain during mixing.
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8.3 Decay of correlations
A consequence of mixing in a system is a very important
property that is frequently used as the criterion of chaotic
behavior: the decay of temporal correlations.

We consider arbitrary integrable functions f and g in a
certain domainD of the phase spaceM of a dynamical system.
We write their phase averages as

h f i � 1

VD

�
�D�

f �x� dx1 . . . dxn ;

hgi � 1

VD

�
�D�

g�x� dx1 . . . dxn :

Let the initial state of the system be specified by the initial
conditions x�0� � x0. Then, after the lapse of some time, the
system comes to the state x�t� that depends on x�0� in view of
the uniqueness of the solution, x � x�x0; t�. We define the
correlator of the functions f and g as


f
ÿ
x�x0; t�

�
g�x0�

� � 1

VD

�
�D�

f
ÿ
x�x0; t�

�
g�x0� dx0 :

This can be rewritten in the form

f �x� gÿx0�x; t��� � 1

VD

�
�D�

f �x� gÿx0�x; t�� dx :
It can be easily shown (see, e.g., Ref. [103]) that if mixing
occurs in the system, then we have


f �x� g�x0�
� � h f ihgi �54�

for arbitrary functions f and g as t!1. Property (54) is
called the decay of temporal correlations. In other words, a
system with mixing `forgets' its initial conditions with the
passage of time.

The decay of correlations is among the very important
consequences of chaotic behavior and consists of the fact that
after the lapse of a time interval equal to the correlation-decay
time, the values of the phase variables become statistically
independent.

9. Billiards

The concept of dynamical chaos was rigorously substantiated
for the first time in the 1970s based on a fairly simple model of
statistical physics, billiards (see Section 1). Considering
billiard models traces back to studies by J Hadamard [104],
who investigated motion on a twisted negative-curvature
surface. Later, billiards as dynamical systems were studied
by D Birkhoff [13]. Amore complete analysis of the problems
related to the dynamics of mass points in a bounded region
was given by N S Krylov [14].

The issues that arise in analyzing billiard problems are
closely related to Boltzmann's ergodic hypothesis; for this
reason, billiardmodels still attract appreciable interest. Fairly
general conditions of the onset of chaos in billiards have been
obtained, and the remarkable properties of billiards have
been described (see Refs [45 ± 47, 60, 105 ± 107] and the
references therein).

In this section, we consider a simple generalization of
billiard systemsÐbilliards with oscillating boundaries. Aswe
demonstrate below, this generalization leads to unexpected
and very interesting phenomena.

Let M be the Euclidian plane. As a billiard table Q, we
take a certain domain Q �M with a piecewise-smooth
boundary qQ. The billiard dynamical system in Q is
generated by the free motion of a mass point (billiard ball)
with elastic reflections from the boundary in accordance with
the law `the incidence angle is equal to the reflection angle.' If
the ball reaches a corner, its further motion is not uniquely
defined or is not defined at all.

As a rule, the boundary of all billiards consists of
m components qQi, i � 1; 2; . . . ;m. If, for each component
qQi, we introduce unit normals n�q� at each point q 2 qQi

directed inside the domain Q, they determine the curvature
k�q� of the curve qQi at all regular points q. The component
qQi is scattering if k�q� > 0. At k�q� � 0 and k�q� < 0, we
respectively obtain a neutral and a focusing component of the
billiard boundary. We let the union of all scattering, neutral,
and focusing boundaries be respectively denoted by qQ�,
qQ 0, and qQÿ.

If the billiard boundary consists only of sufficiently
smooth convex curves inside Q, such that qQ � qQ�, then
the billiard system is called a scattering (or Sinai) billiard. It is
for scattering billiards that the property of mixing was proved
for the first time [108]. A billiard system whose boundary
consists of focusing components qQ � qQÿ or neutral and
focusing components qQ � qQ 0

S
qQÿ is called focusing.

Under certain conditions, such a billiard can also have the
property of mixing [45, 107, 109].

For arbitrary relations between the billiard-boundary
parameters, the dynamics of a particle are determined by the
relation between the times spent by the particle in the
neighborhoods of qQ� and qQÿ. The exact meaning of this
statement is formulated in Refs [45, 106, 109].

9.1 The Lorentz gas
A variation of the scattering billiards is a system defined in an
unbounded domain D and consisting of many circular,
infinitely heavy scatterers Bi with boundaries qQi, of radius
R, situated at the sites of an infinite periodic triangular lattice
with a step a (Fig. 17). The billiard in the domain
Q � D nS r

i�1 Bi is called the Lorentz gas. For qQ � const,
such a billiard has been studied fairly comprehensively (see,
e.g., Refs [44,45, 47] and the references therein).

The properties of this model can be qualitatively different
depending on the scatterer radius and the parameter a. If

R

a

Figure 17. Two-dimensional model of the Lorentz gas. Scatterers of radius

R are located at the sites of a triangular lattice with a period a.
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R4 a=2, the billiard is said to have an infinite horizon. If
R5 a=

���
3
p

, the motion of the particle is restricted to one cell,
and hence the system has a bounded horizon. If
a=2 < R < a=

���
3
p

, the free path of the particle is limited, but
it can freely move in space. In this case, the Lorentz gas has an
open horizon.

It was proved for the Lorentz gas with bounded and open
horizons that the motion of the particle in a planar, two-
dimensional case has the property of mixing and, moreover,
reduces to Brownian motion. A positive diffusion coefficient
exists in such a system [44]; it can be expressed in terms of the
correlation function of the particle velocity. Thus, Brownian
dynamics can follow from a purely deterministic behavior.

For an infinite horizon, the statistical properties of the
Lorentz gas change because of the increasing probability of
long paths. In particular, the decrease of correlations is
slowed down, and the mean free path does not converge [44,
45, 110 ± 112]. At the same time, for a Lorentz gas with a
bounded or open horizon, an exponential decay of correla-
tions is observed.

9.2 Scattering billiards with oscillating boundaries.
The Fermi acceleration
The Lorentz gas is a system lying within the scope of
nonequilibrium statistical mechanics. Among its variations
is the model first suggested in the context of the Fermi
acceleration [113, 114], in which the scatterers oscillate with
a small amplitude. A generalized treatment of this problem
implies a physically more natural analysis of billiards with
boundaries disturbed according to a certain law. What do the
oscillations of the boundaries result in? The particle in such
billiards experiences both head-on and head ± tail collisions
with the boundary. In the first case, the reflection from the
boundary occurs if the particle and the boundary move
opposite to each other. In the second case, the collisions
occur if the particle and the boundary move in the same
direction. The head-on collisions `heat' the particle, i.e.,
increase its velocity. In contrast, head ± tail collisions result
in `cooling' the particle, i.e., in decreasing its velocity.

The mechanism of particle acceleration due to collisions
with moving massive scatterers was first suggested by Fermi
[115] to account for the origin of high-energy cosmic
particles (see Ref. [116] for a review). Fermi's idea was that
charged particles colliding with chaotically moving magnetic
clouds in interstellar space should accelerate on average. If
we regard the cloud as a massive body, we can easily
understand the reasons for the acceleration. If the velocities
of the clouds with which the particle collides are distributed
at random, it can be said that the number of clouds moving
in some direction is equal to the number of oppositely
moving clouds. Therefore, the particle predominantly
collides with counter-moving clouds and hence more fre-
quently gains energy that loses it. An effective acceleration,
called the Fermi acceleration, thus occurs. Later, the Fermi ±
Ulam and other models were developed (see Refs [54, 117 ±
125]) to account for the origin of this phenomenon to a
greater or lesser degree.

Billiards with perturbed boundaries can be considered a
generalization of the Fermi ±Ulam model. In particular, an
investigation of the properties of elliptic and circular billiards
shows [126 ± 128] that the increase in velocity is limited in this
case, as in the Fermi ±Ulam model. Billiards were also
considered in the domain formed by a rectangle with corners
replaced with circular quadrants of radius R, with a

periodically oscillating side [129]. The collision with the
boundary is not absolutely elastic, the particle loses part of
its velocity, and the loss is proportional to a certain constant d
�d5 1�. This model is close to the Fermi ±Ulam model but
the presence of the rounded corners introduces some
randomization into the particle dynamics. The relaxation of
the system to an equilibrium state was studied. Similar
investigations were previously carried out in Refs [130, 131]
using the Fermi ±Ulammodel. It was shown that the quantity
P�t� � E�t� ÿ E�1�, i.e., the deviation of the average energy
of the system from its equilibrium value decreases exponen-
tially in this model, P�t� � exp �ÿt=t�, which is generally
natural formost physical systems. An analysis of this quantity
for a billiard model [129] shows that the relaxation of the
system to the equilibrium state is slower, andP�t� decreases in
accordance with the law P�t� � exp

ÿÿ�t=t�b�, where b < 1
and b decreases with an increase in R.

The results in Refs [113, 114] have clarified the reasons for
the decrease in the relaxation rate of the system. As the radii
of the arcs are increased, the motion becomes more chaotic,
which results in the acceleration of particles. Therefore, the
relaxation of the system to the equilibrium, being related to
the dissipation of the particle energy, is slower. Such an
approach allows determining the quantity b and, accord-
ingly, the rate of relaxation to the equilibrium for systems
with predominantly chaotic dynamics.

In the general case, the situation is much more complex:
the Fermi acceleration is not inherent in an arbitrary chaotic
billiard with disturbed boundaries [114]. The point is that
particle deceleration can also be observed in focusing billiards
depending on the initial velocity of the particle [132]. If the
initial velocity (which generally depends on the geometry of
the billiard) exceeds a certain critical value, the particle is
accelerated on average. On the contrary, if the initial velocity
is less than the critical value, the billiard particles are
decelerated. Thus, it becomes possible to separate the
ensemble of particles by their velocity and decelerate
particles by disturbing the boundaries. This effect of the
billiard version of Maxwell's demon was first revealed and
described in Refs [114, 132] based on the example of a
`stadium' billiard (i.e., a billiard whose domain Q resembles
the usual stadium in shape; see Fig. 18).

The dynamics of scattering billiards with disturbed
boundaries were described in detail in Refs [113, 114, 133].
For this reason, we do not consider them here, dwelling on
focusing billiards. We only note that the obtained results
suggest a universal presence of particle acceleration in chaotic
billiards with oscillating boundaries. Moreover, based on the
investigations carried out, the hypothesis that deterministic
randomness is a sufficient condition for the Fermi acceleration
was put forward [113, 114]. This assumption has been
confirmed by several investigators and, in part, was recently
substantiated [125, 134, 135].

9.3 Focusing billiards with oscillating boundaries.
Particle deceleration
The mechanisms of the onset of chaos are different in
scattering and focusing billiards [45, 47]. In the first case, a
parallel beam encountering a scattering component starts
diverging immediately. In the second case, after a reflection
from the focusing surface, the beam converges at the focusing
point. In such billiards, chaos sets in if the convergence time of
the beams is shorter than the divergence time (i.e., the beam of
trajectories is defocused).
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We first consider billiards with unperturbed boundaries
[132]. We assume that the curvature of its focusing compo-
nents is small,

l4 a4 b : �55�

Let these components be formed by arcs of radius R, with the
angular measure 2F (Fig. 18a), symmetric with respect to the
vertical axis of the billiard. Geometric considerations lead to
the relations R � �a 2 � 4b 2�=8b and F � arcsin �a=2R�. In
particular, the condition for chaos is satisfied for such a
billiard if the arc completing the focusing component to the
entire circle belongs to the domain Q (see Ref. [45]). For
b5 a, this yields l=2R � 4bl=a 2 > 1.

We introduce dynamic variables as shown in Fig. 18a. Let
the positive direction be counterclockwise for the angles jn

and a �n and clockwise for the angle an. If the boundary of the
billiard is motionless, the incidence angle a �n is equal to the
reflection angle an. Let Vn be the particle velocity and tn the
instant of the nth collision with the boundary. To construct a
map describing the dynamics of the particle in such a billiard,
two cases must be considered: (1) after a collision with a
focusing component, the particle collides with it again (pair
collisions) and (2) the next collision occurs with another
focusing component.

In the case of pair collisions, a geometric analysis [132]
leads to a map of the form (Fig. 18b)

a �n�1 � an ;

an�1 � a �n�1 ; �56�
jn�1 � jn � pÿ 2an �mod2p� ;

tn�1 � tn � 2R cos an
Vn

:

If jjn�1j < F, the particle continues a cascade of collisions
with one component. Otherwise, the �n� 1�th collision
occurs with another focusing component. For a transition
from one focusing component to another, the map can be
written as

a �n�1 � arcsin

�
sin �cn � F� ÿ x �n�1

R
coscn

�
;

an�1 � a �n�1 ; �57�
jn�1 � cn ÿ a �n�1 ;

tn�1 � tn � R�cosjn � cosjn�1 ÿ 2 cosF� � l

Vn coscn

;

where cn � an ÿ jn, xn � �R= coscn�
�
sin an � sin �Fÿ cn�

�
,

and x �n�1 � xn � l tancn �mod a�.

Figure 19a presents a numerically obtained phase portrait
of a stadium billiard specified by maps (56) and (57). As the
coordinate, we chose the quantity xn � 1=2� �R sinjn�=a
equal to the projection of the point of collision between the
particle and the focusing component onto the 0x axis,
normalized to the width of the billiard. The gray scale in the
figure represents the number of points in the given region of
phase space. To construct the graph, we used four trajec-
tories. One of them starts in the stochastic region and includes
5� 108 iterations. Three others start in the regular region and
contain 107 iterations each. The initial conditions are marked
with crosses in the graph.

It can be seen from Fig. 19 that stable fixed points
surrounded by invariant curves exist in the system. The
dynamics of particles in the neighborhood of these points
are regular and are represented by motion along such
invariant curves. The regions corresponding to different
resonances are divided by separatrices surrounded by a
stochastic layer. The width of this layer is determined by the
degree of nonlinearity of the system. The particle starting its
motion in such a layer visits all regions accessible to it in a
chaotic manner. As the nonlinearity increases, the fixed
points lose their stability; as a result, a globally stochastic
domain forms, for which the entire phase space is accessible to
a particle.

For an analytic treatment ofmap (56), (57), wemake some
simplifications. We approximate the focusing component of
the billiard system by a segment of a parabola, w�x� �
4bx�xÿ a�=a 2; as the coordinates, we choose the angle c
between the velocity vector and the vertical, c 2 ÿp=2; p=2� �,
and the projection x of the particle ± boundary collision point
onto the 0x axis, x 2 �0; a�. With approximation (55), we then
find

xn�1 � xn � l tancn�1 �mod a� ; �58�
cn�1 � cn ÿ 2b�xn�1� ;

where b�x� � arctan
ÿ
w 0�x�� is the inclination angle of the

tangent at the collision point. In this case, obviously,
b � 4b�2xÿ a�=a 2. We now make the substitution x � x=a,
x 2 �0; 1�. In these variables, the map acquires the form

xn�1 � xn �
l

a
tancn �mod 1� ;

�59�
cn�1 � cn ÿ

8b

a
�2xn�1 ÿ 1� :

Clearly, one of the families of fixed points of the billiard can
be written as

�
x � 1=2,cs � arctan �ma=l �	,m � 1; 2; . . . . In

the configuration space, these points correspond to collisions

a

l

b

a

Vn�1

Vn

Vn�1

Vnÿ1

R
F jn
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a�n

b

x �n0 xn x

Vn
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cnÿ1
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a �n�1a �n an
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Figure 18. The construction of a map for stadium billiards.
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Figure 19. Phase portrait of a stadium billiard with a boundary in the form

of a circular arc (a) and a parabola (b), at a � 0:5, b � 0:01, and l � 1

[132].
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of the particle with the center of the focusing component. We
analyze the stability of such points. For this, we linearize the
map using the substitution xn � Dxn � 1=2, cn �
Dcn � arctan �ma=l �. Then, an expansion into a series in Dc
yields

Dxn�1 � Dxn �
l

a cos2 cs

Dcn �O�Dc 2
n � ;

Dcn�1 � Dcn ÿ
16b

a
Dxn�1 ;

where cs � arctan �ma=l �. In this case, the transformation
matrix is

A �
1

l

a cos2 cs

ÿ 16b

a
1ÿ 16bl

a 2 cos2 cs

0BBB@
1CCCA :

We can easily verify that detA � 1. Therefore, the obtained
map preserves the measure. Hence, we can find that the
condition of stability of fixed points is cos2 cs 5 4bl=a 2, or
m 2 4 l=�4b� ÿ l 2=a 2.

The destruction of all resonances and transition to
chaos occurs if 4bl=a 2 > 1. It can be understood without
difficulty [132] that the phase-space dynamics of the
billiard system in the neighborhood of a stable point are
described by a twist map with the rotation number r �
arccos

�
1ÿ 8bl=�a coscs�2

�
. The time between successive

collisions of the particle with the boundary is
t � l=�V coscs�, where V is the particle velocity. Therefore,
the rotation period is

Trot � 2p
r

t � 2pl

arccos
�
1ÿ 8bl=�a coscs�2

�
coscs

1

V
: �60�

The phase portrait of the billiard with parabolic focusing
components specified by approximate map (59) is shown in
Fig. 19b. By comparing it with Fig. 19a based on the exact
map (56), (57), we can see that in this case, the trajectory is
uniformly distributed over the entire stochastic domain. In
the first case, a higher density corresponds to the domain
c5 0, while the domain c4 p=2 is virtually empty. The
difference occurs because in deriving map (59), we assumed
that the depth of the focusing component b is small. As a
result, if this approximation is used instead of the exact map,
collisions at large c occur with a higher probability on the
right-hand part of the arc (see Fig. 18), and hence the angle c
decreases. Thus, the particles are pushed out to the domain of
small c and predominantly move in the neighborhood of the
regular domains.

If the boundary of the billiard is perturbed, the particle
can pass from a chaotic domain to a regular domain, and
vice versa. If the particle velocity is much larger than the
velocity of the boundaries, it can be shown [132] that the
trajectory of the representation point in the neighborhood
of stable fixed points of the phase space is similar to a
spiral. In this case, the rotation frequency remains the same
as in the unperturbed system. In addition, it can be easily
understood that a resonance between such a rotation and
the perturbation of the boundaries sets in at a certain
particle velocity. The presence of the resonance in the
system under study leads to an unexpected result Ð the
selection of the billiard particles according to their velocity

[132]. The particles can either accelerate or decelerate
depending on their initial velocity. We consider this
phenomenon in more detail.

Let the focusing components of the billiard be disturbed
such that the velocity of their motion is the same in
magnitude at each point and directed normally to them.
We also assume that the boundary oscillates according to a
periodic law (Fig. 18a): R � R0 � r0 f �ot� Z�, where o is
the oscillation frequency and Z is the phase. Then the
velocity of the boundary is U�t� � _R. In addition, we
assume that the displacement of the boundary is small, i.e.,
r0 5 l. Then the map corresponding to such a billiard
system is given by [114, 132]

Vn �
�������������������������������������������������������������
V 2

nÿ1 � 4Vnÿ1 cos a �n Un � 4U 2
n

q
;

�61�
an � arcsin

�
Vnÿ1
Vn

sin a �n

�
;

a �n�1 � an ;

jn�1 � jn � pÿ 2an �mod 2p� ;
tn�1 � tn � 2R cos an

Vn

9>>>=>>>; at jjn�1j4F

�62�
and, if jjn � pÿ 2anj > F,

cn � an ÿ jn ;

xn � R

coscn

�
sin an � sin �Fÿ cn�

�
;

x �n�1 � xn � l tancn �mod a� ;
a �n�1 � arcsin

�
sin �cn � F� ÿ x �n�1

R
coscn

�
;

jn�1 � cn ÿ a �n�1 ;

tn�1 � tn � R�cosjn � cosjn�1 ÿ 2 cosF� � l

Vn coscn

:

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

�63�

We note that relation (55) was not used in deriving this map.
The only approximation assumed was the smallness of the
displacements of the billiard boundary (i.e., we took only the
leading terms into account). Expressions (62) correspond to a
series of successive collisions of the particle with one focusing
component and expressions (63) to a transition from one
component of the boundary to another.

We analyze map (61) ± (63) in two cases: for completely
chaotic and nearly integrable billiards. In the first case, the
billiard is a classical stadium, i.e., F � p=2 (see Fig. 18), and
its boundary consists of two halfcircles and two parallel
straight lines tangent to them. The following parameters
were chosen for this billiard: a � 0:5, b � 0:25, l � 1,
r0 � 0:01, o � 1, and V0 � 0:1. The particle velocity was
calculated as the average over an ensemble of 5000 trajec-
tories with various initial conditions. The initial conditions
were chosen at random at the focusing component such that
the velocity vector of the particle was directed inward for the
billiard tableQ. As follows from a numerical analysis (curve 1
in Fig. 20a), the obtained dependence has the form
V�n� � ���

n
p

. It is interesting to note that the same dependence
is also observed in the Lorentz gas [113, 114].

In the nearly integrable case, the parameter b is fairly
small, the curvature of the focusing component introduces
only a weak nonlinearity into the system, and relation (55) is
satisfied. In such a configuration, the phase space has
domains of regular and chaotic dynamics (see Fig. 19).
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In a sufficiently small neighborhood of fixed points, the
billiard system has a definite rotation period Trot [see
Eqn (60)]. At the same time, the oscillation period of the
boundary is T � 2p=o. Thus, at a certain velocity Vr, a
resonance is observed in the system. As follows from the
analysis in Ref. [132], the dependence of the particle velocity
on the number of collisions is different for the two sides of the
resonance. For the initial velocity V0 < Vr, the particle
velocity decreases to the final value Vfin < Vr and the
velocity distribution of particles in the interval �0;Vfin�
approaches a stationary distribution. But if V0 > Vr, the
particle velocity can reach high values. In this case, the
distribution of particles is time-dependent and increases
indefinitely.

Figure 20a (curves 2 ± 5) shows the dependence of the
particle velocity on the number of collisions. Based on 5000
realizations for each initial velocity, three curves were
plotted for the velocities (mean, minimum, and maximum)
achieved by the nth collision with the boundary. The range
of velocity variation can be determined thus. As follows
from the figure, at V0 < Vr, the average particle velocity
(curve 2) gradually decreases and approaches a constant.
The maximum particle velocity (curve 3) decreases to Vfin

and fluctuates around this value. In the case where V > Vr,
the minimum particle velocity also decreases. This means
that particles that have found their way to the small-
velocity domain are also present in the ensemble. Accord-
ing to the results of numerical analysis, the fraction of such
particles is about 75%. At the same time, particles with

fairly high velocities (curve 5) corresponding to the
maximum velocity in the ensemble are present. As a
result, the average velocity (curve 4) increases.

Therefore, a certain critical velocity exists in this billiard
system; particles with velocities below the critical value
decelerate and those with velocities above the critical value
accelerate. The critical velocity can be expressed as

Vc � ol

coscs arccos
�
1ÿ 8bl=�a coscs�2

� : �64�

Figure 20b shows the dependence of critical velocity (64)
on the characteristic parameters of the billiard, the width a
and the depth b of the focusing component (Fig. 18a). The
dashed curves represent the dependences found numerically
and the solid curves are the approximation based on Eqn (64).
It can be seen that the critical velocity approaches zero with
an increase in b, i.e., particle deceleration is not observed in
the corresponding billiards. The same is the case if the
parameter a decreases. This is because such variations in the
parameter increase the nonlinearity in the system and,
accordingly, the degree of chaotization in the billiard
dynamics.

Thus, in the billiard system considered, the particles in the
ensemble are separated in accordance with their velocity:
some of them are accelerated and others are decelerated.

10. Conclusion

Theoretical analysis of nonlinear systems with complex,
particularly chaotic, behavior is among the most important
areas of modern physics. This is because chaotic processes are
inherent in a very wide class of phenomena. In addition,
nonlinear dynamics, in the framework of which the concept of
deterministic chaos is developed, combines extremely diverse
applications suggested by the natural sciences, from the
theory of excitable media to the problems of information
processing and storage [137]. The nature and consequences of
chaos remain among the most challenging issues in these
fields.

Substantial progress has been achieved by now in the
investigation of classical mechanics systems. In particular, a
possibility for renormalization was found for the resonances
of perturbed motion near the separatrix [138, 139]. Notable
advances were achieved in the KAM theory [53, 70]; its
generalizations to infinite-dimensional systems were found
[140, 141]; results concerning the presence of diffusion in
systems described by partial differential equations were
obtained [142, 143]; consequences of the KAM theory for
reversible systems were extracted [144]; and quantum versions
of the KAM theory were developed. For diffusion trajec-
tories, a structure was discovered that came to be known as
the `stochastic web' [60, 62, 145].

Among the areas in which the theory presented here finds
direct application, The author is most familiar with the N-
body problem, celestial mechanics, and systems of classical
mechanics; we therefore outline the range of issues that
belong precisely to these areas. Applications to other fields
are described in some publications in the reference list.

In his time, PoincareÂ called the N-body problem a
fundamental unresolved problem of classical mechanics.
V M Alekseev substantially contributed to the development
and investigation of this problem [146]. The KAM theory
cannot be directly used to analyze planetary problems,
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Figure 20. (a) Dependence of the average particle velocity on the number n

of collisions with the boundary in a stadium billiard with oscillating walls

[114, 132]. Two curves 1 correspond to a billiard with well-developed

chaotic properties �b � 0:25�. Curves 2 ± 5 correspond to a nearly integr-

able billiard �b � 0:01�, V0 � 1 (curves 2 and 3) and V0 � 2 (curves 4 and

5). (b) Dependence of the critical particle velocity Vc on the parameters a

and b (see Fig. 18) in a nearly integrable stadium billiard with oscillating

boundaries. Dashed curves are numerical calculations; solid curves are

approximation (64) [136].
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because proper degeneration is present there. But general-
izations are known [23, 147] that allow applying the results of
the KAM theory to certain systems from a relatively narrow
class.

In the past 25 years, some extremely important results
were obtained in celestial mechanics: the PainleveÂ hypothesis
on collisionless singularities was proved [148 ± 150], new
remarkable solutions (choreographies) of the N-body pro-
blem were found (see Ref. [151]), and resonances were proved
to play a key role in the dynamics of celestial bodies [152]. In
addition, large-scale chaos was revealed in the Solar system,
which seems to be among the most important factors
responsible for the formation of the asteroid belt and for the
diffusion of comets from the outer regions of the Solar system
[153 ± 155] (astronomical implications of this phenomenon
are described in Refs [156, 157]). It was also established that
chaos is present in the system of Saturn's satellites [158]. We
mention the notable result that the Arnol'd diffusion is
present in the three-body problem [159, 160] (see Ref. [161]
for a discussion of the diffusion in the N-body problem).
Reference [162] presents a proof of the Arnol'd diffusion in
the D'Alembert's problem of the rotation of an oblate planet
around a motionless star. A recently published collection
[163] presents some new results that refer to the development
of chaos in celestial mechanics and the N-body problem.

The problem of migration of minor bodies in the Solar
system is among the incompletely resolved problems of
celestial mechanics closely related to instability and chaos
(see Refs [54, 154, 164, 165] and the references therein); in
particular, these are the formation of Kirkwood gaps [166]
(i.e., gaps in the distribution of asteroids near resonances with
Jupiter's mean motion) [167 ± 169], of the Kuiper (or Edge-
worth ±Kuiper) belt [170, 171], and of the Oort cometary
cloud [172]. Closely related to these issues is the asteroidal-
hazard problem (highly popular in recent years), i.e., the
evaluation of the probability of migration of minor bodies
into the terrestrial-planet zone [164, 173, 174]. We also note
theoretical issues of the finiteness of the number of relative
equilibria in the classical N-body problem and of collisional
trajectories.

Among the very interesting phenomena that call for
explanation and are related to the theory of chaotic
dynamical systems, we note certain complex configurations
of the major-planet rings [164, 175]. In recent years, the
interest in this problem was revived by the Cassini mission.

The stability of the Solar system remains an unresolved
fundamental problem of celestial mechanics, which has
commanded investigators' attention for a long time [164,
176, 177]. Recent studies have shown that although the Solar
system is not stable, it can nonetheless be considered stable
over time intervals shorter than its lifetime (about five billion
years). Within several billion years, the orbital diffusion of
terrestrial planets can result in the recession of Mercury or its
collision with Venus (see Ref. [178]). At the same time, the
motion of major planets is to be fairly regular. We note,
however, that many other effects unaccounted for in the
Newton equations (frictional interaction with interstellar
dust, relativistic corrections, etc.) must manifest themselves
on such a time scale. Therefore, the question of the stability of
the Solar system in the formulation in question is only
indirectly related to the actual planetary motion.

Billiard-type systems with perturbed boundaries
described in Section 9 belong to a relatively fresh area of
mathematical physics, which opens wider horizons in inves-

tigating certain fundamental problems of classical statistical
mechanics (see Ref. [137]). In particular, it presents a new
view of the problem of cosmic-particle acceleration to high
energies, the Fermi acceleration. Ever since the classic study
by Fermi [115], this problem has attracted the attention of
researchers in various branches of physicsÐoptics [179, 180],
plasma physics [181, 182], astrophysics [183 ± 185], etc.
Similar ideas were recently invoked to account for some new
experimental results obtained in atomic physics [186].

Specially configured billiards are also used to study the
phenomenon of Fermi acceleration [113, 114, 134]. Such
systems have the distinctive feature that they could be used,
after a suitable modification, in experimental investigations
[187 ± 189].

The authors of Refs [113, 114], based on their results, put
forward the hypothesis that if a billiard with a fixed boundary
is chaotic, switching on a disturbance of its boundary leads to
the Fermi acceleration. This hypothesis was tested and
partially confirmed (see Refs [125, 134, 135]).

In focusing nearly integrable billiards for which the
curvature of the boundary components introduces only a
weak nonlinearity into the system, periodic disturbances of
the boundaries lead to an interesting new phenomenon,
particle separation by velocity. Depending on the initial
velocity, particles in the billiard system either accelerate or
decelerate. In the case of acceleration, the particle distribution
is time-dependent and increases unlimitedly. For decelerating
particles, an equilibrium velocity distribution is established.
This property of a billiard system can be regarded as a billiard
version ofMaxwell's demon: the periodic perturbations of the
boundaries result in velocity losses by slow (`cold') particles,
to a certain nonzero level, and the acceleration of fast (`hot')
particles. The physical mechanism decelerating the particles is
not yet completely understood [136].
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