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In this paper, the behavior of an excitable medium in
the state of developed spatio-temporal chaos is ana-
lyzed. We show that a weak point action on the medium
results in the suppression of all spiral waves and stabi-
lization of the system dynamics. The analysis per-
formed is based on the identification of the number of
spiral waves in the medium.

The stabilization of the turbulent dynamics of active
media, which is based on a weak periodic point action,
is a rather important direction of research, finding its
application in cardiology. At present, in the theory of
excitable systems, a hypothesis dominates according to
which the appearance of a fatal cardiac arrhythmias is
associated with the generation in the heart tissue of a
great number of autowave sources, namely, spiral
waves and vortex structures (i.e., spatio-temporal
chaos) (see, e.g., [1, 2] and references therein).

Modern methods for the stabilization of such
regimes based on single electric pulses (including those
based on implanted defibrillators) are rather arduous
and not always successful. However, recent studies
open novel potentialities in this field of medical sci-
ence. There is no necessity in high-amplitude pulsed
action, and, in many cases, the action can be weakened
[3]. Moreover, in a number of excitable media, the tur-
bulent regime can be stabilized by a rather weak peri-
odic parametric action [4, 5] or by a force action
applied at a certain domain of a medium [6–8].

In this study, we exploit the simple theoretical
model of the FitzHugh–Nagumo type [9, 10] for an
excitable medium. We show that the spatio-temporal
chaos arising as a result of the decay of spiral waves can
be suppressed by means of a point action having a
rather low amplitude. In addition, the problem of seek-
ing frequencies that provide for the efficient suppres-

sion of all spiral waves is solved. Upon this stabiliza-
tion, the medium remains in the spatially homogeneous
state.

The FitzHugh–Nagumo model describes a two-
component system of the activator–inhibitor type:

 

(1)

 

As applied to the heart-muscle dynamics, variable 

 

U

 

corresponds to the action potential for muscular cells.

Although this model well describes (at the qualita-
tive level) the excitation propagation in the muscular
tissue and demonstrates basic types of structures aris-
ing in excitable media of the activator–inhibitor type, it
is unsuitable for quantitative description. This is asso-
ciated with the fact that this model does not allow for
certain important properties of the heart tissue, such as
the dependence of the refractoriness period on both the
amplitude and duration of the excitation phase.

In order to obtain a more adequate description, the
set of Eqs. (1) is usually represented in the form
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In this case, the form of the functions 

 

f

 

 and 

 

g

 

 is chosen
with a goal to providing for the consistency of the
action-potential profiles to be obtained with experimen-
tal data.

Recently, the model developed in [11] has been
widely employed, it having been proposed there that
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the following piece-wise linear functions be used for
the functions 

 

f

 

 and 

 

g

 

:

 

(2)

 

One of the advantages of this description is the pres-
ence of two independent relaxation parameters. One of
them (

 

G

 

3

 

) determines the relaxation period for small
values of 

 

U

 

 and 

 

V

 

. The other parameter (

 

G

 

1

 

) determines
the absolute value of the relaxation parameter for large
values of 

 

V

 

 and intermediate values of 

 

U

 

, which corre-
sponds to the leading and trailing wave fronts.

To ensure a correspondence with actual media (e.g.,
heart tissue), the following values of the parameters
related to the set of Eqs. (2) are usually chosen: 
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 = 0.837, 

 

V

 

1

 

 = 1.8, 

 

a 

 

=

0.06, and 
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 = 3. In this case, 
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1

 

 ranges from 
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 = 1, and 0.1 
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 2.

We have analyzed the dynamics of this system in a
rectangular plane domain of the size of 

 

350 

 

×

 

 

 

350

 

 nodes.
In order to exclude edge effects at the boundaries, we
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set the periodic conditions; i.e., the domain under study
had the torus topology.

In the chosen range of parameter values, the auto-
wave solutions of the spiral-wave type are unstable. As
time elapses, they decay into smaller waves and, as a
result, the regime of spatio-temporal chaos is developed
in the system. The spiral waves are the basic types of
the autowave solutions in the given system. This opens
the possibility of using their number as a criterion of the
complexity of the regime existing in the system [12–15].
The calculation algorithm is based on the fact that the
core of a spiral wave (as an arbitrary singularity point
of the wave-front) is a singularity for the phase field:
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) – U*, V(x, y, t) – V*).

In this case, the quantity n = , called the

topological charge, differs from zero only when the
integration contour envelopes the singularity. This is
the case when n is an integer, and its sign determines
the chirality of the spiral wave. The time dependence
for the calculated number of spiral-wave cores is plot-
ted in Fig. 1. The plot corresponds to the appearance of
the chaotic regime arising from a decaying single spiral
wave.

This chaotic regime is further used as the initial state
in the analysis of a system with a point periodic action
of the rectilinear-step shape:

I (t) = A(2θ(t – Tτ) – 1).

2arctan

1
2π
------ ∇ϕdl∫°

+–

40

4000 800 1200 1600 2000
t

80

120

160

n

Fig. 1. Number of spiral-wave cores as a function of time in the case of the decay of a single spiral wave and generation of chaos
(G1 = 1/50, G3 = 0.3).
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Here, A = 6 is the amplitude, θ is the Heaviside step
function, and τ varies within the range from 0.1 to 0.9.
The action was applied to the domain enveloping 2 ×
2 nodes. As applied to the heart tissue, this action is
weaker than in the case of an implanted defibrillator by
a factor of 1000. 

Insofar as arbitrarily (in the dark) seeking suppres-
sion frequencies is extremely inefficient, we employed
a method that made it possible to preliminarily localize
the range of frequencies providing the suppression. The
concept of this method is based on a well-known prop-
erty of excitable media: in the case of competing wave
sources, only the source with the highest frequency of
the generated waves survives. Thus, the most favorable
frequencies of the external action (from the standpoint
of suppressing spiral waves) are those for which the fre-
quency of excited circular waves in the medium is close
to the maximum possible frequency for the given
parameters of the medium.

In order to determine these frequencies, we gener-
ated circular waves in a small volume of the medium
and found the dependence of the frequency ν of the
waves being obtained on the frequency ω of the point
source. The frequency intervals in the vicinity of the
maxima of this dependence served as candidates for a
more detailed study. It is worth noting that the simula-
tion in a small volume of the medium over the course of
several tens of periods is sufficient for constructing the
function ν(ω). However, to verify the presence or
absence of the suppression effect at the given fre-
quency, it is necessary to consider large volumes of the
medium over the course of several thousands of peri-
ods, since otherwise the turbulent regime is not deve-
loped.

The set of Eqs. (2) was investigated for values of the
parameters G1 = {1/75, 1/50, 1.33} and G3 = {0.1, 0.3,

0.5, 1.0, 1.5, 2.0}, i.e., on the calculation mesh with
18 nodes. For all of them, the effect of suppression of
the spatio-temporal chaos was observed (Fig. 2) at fre-
quencies in the vicinity of the maximum for the func-
tion ν(ω) (Fig. 3). The number of cores for spiral waves
as a function of time in the system with a point action
is shown in Fig. 4.

The numerical analysis performed has demonstrated
that the stabilization of the dynamics is also possible if
two or more excitation sources are introduced into the
medium. However, in this case, the suppression effi-
ciency noticeably depends on the distance between the
sources. When they are spaced for a sufficient distance,
the effective action turns out to be stronger than in the

Source of excitation

Fig. 2. Results of the action on a system with developed spatio-temporal chaos (G1 = 1/50, G3 = 0.3, A = 6).
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Fig. 3. Dependence ν(ω) (G1 = 1/50, G3 = 0.3).
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case of a single source, so that the suppression of spiral
waves occurs more rapidly by a factor of 3–5. If the
sources are placed closely to each other, they begin to
compete, thereby terminating the generation of circular
waves.

An additional series of numerical experiments was
carried out with an extended source in the form of a thin
filament. It was found that the suppression efficiency
rapidly dropped as the filament length was increased.
For example, filaments of length 10l and longer, where
l is the wave-front width, yielded the inverse effect;
namely, the number of spiral-wave cores increased.

Thus, the most efficient method for the stabilization
of the turbulent dynamics of excitable media is that of
suppressing spiral waves by a weak point action in the
form of a single or several sufficiently spaced small-
size sources. In the future, we hope to find conditions
that will allow us to reduce even more the amplitudes of
the negative half-wave. This will result in a decrease in
the total power of the action due to choosing a special
pulse shape, and, hence, will allow us to suppress the
spatio-temporal chaos by means of purposefully chosen
low-intensity pulses. It would appear to be impossible
to attain this effect with ordinary sinusoidal-shape
pulses.
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Fig. 4. Number of spiral waves as a function of time in the case of the point action (G1 = 1/50, G3 = 0.3, A = 6).


