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1 Formulation of the Problem

The Sitnikov problem consists of two equal masses M (called primaries) mov-
ing in circular or elliptic orbits about their common center of mass and a
third, test mass µ moving along the straight line passing through the cen-
ter of mass normal to the orbital plane of the primaries. This problem has
attracted the attention of many other authors (see for instance [1–9]). The
equation of motion can be written in scaled coordinates and time as

z̈ +
z

[ρ(t)2 + z2]3/2
= 0, (1)

where z denotes the position of the particle µ along the z-axis and ρ(t) =
1 + e cos(t) + O(e2) is the distance of one primary body from the center of
mass. Here we see that the system (1) depends only on the eccentricity, e,
which we shall assume to be small. The linear approach to this system with
assumption that (1) possesses moderate eccentricity and small amplitudes was
carried out in [7]. We first consider the circular Sitnikov problem i.e. when

e = 0, for which H =
1
2
p2 − 1√

1 + z2
, p = ż. The level curves H = h, where

h ∈ [−2,+∞), partition the phase space (p, z) into qualitatively different types
of orbits. We are interested in solutions that correspond to the level curves
H = 0, namely two parabolic orbits that separate elliptic and hyperbolic orbits
and can be considered as a separatrix between these two classes of behavior.
To make clear how this problem is related to homoclinic orbits, let us employ
the non-canonical transformation [9] z = tanu, p = ż, u ∈

[
−π

2 ,
π
2

]
, v ∈ R.

Then the Hamiltonian for (1) in the new variables (u,p) has the formH(u, p) =
1
2
p2− 1

ρ(t)2 + tan2 u
= H0(u, p)+eH1(u, p, t, e), where H0(u, p) =

1
2
p2−cosu.

One can see that when e = 0 the form of the Hamiltonian that obtained after
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non-canonical transformation exhibits the pendulum character of motion. In
this work we consider only small values of e. Hence due to the KAM-theorem,
since our system has 3/2 degrees of freedom the invariant tori bound the
phase space and chaotic motion is finite and takes place in a small vicinity of
a separatrix layer. Our analysis is directed to the stabilization of this chaotic
behavior in the elliptic Sitnikov problem.

2 Stabilization of Chaotic Behavior in the Extended
Sitnikov Problem

The idea that chaos may be suppressed goes back to the publications. [10–
14] We consider the problem of stabilization of chaotic behavior in sys-
tems with separatrix contours that can be described by (2.1) ẋ = f0(x) +
εf1(x, t), where f0(x) = (f01 (x), f02 (x)), f1(x, t) = (f11 (x, t), f21 (x, t)).
For this equation the Melnikov distance, which “measures” (in the first
order of ε) the distance between stable and unstable manifolds (Fig. 1),

D(t0) is given by D(t0) = −
∞∫

−∞

f0 ∧ f1dt ≡ I[g(t0)]. We assume that D(t0)

changes its sign. To suppress chaos we should get a function of stabiliza-
tion f∗ (ω, t) that leads to a situation when separatrices are not intersected:
(2.2) ẋ = f0(x) + ε [f1(x, t) + f∗(ω, t)] , where f∗(ω, t) = (f∗

1 (ω, t), f∗
2 (ω, t)).

Suppose D(t0) ∈ [s1, s2] and s1 < 0 < s2. After the stabilizing pertur-
bation f∗(ω, t) is applied we have two cases: D∗(t0) > s2 or D∗(t0) < s1,
where D∗(t0) – Melnikov distance for system (2.2). We consider the first case
(analysis for the second one is similar). Then I[g(t0)] + I[g∗(ω, t0)] > s2,

where I[g∗(ω, t0)] = −
+∞∫

−∞

f0 ∧ f∗dt. This expression is true for all left hand

a) b)

c) d)

Fig. 1. Poincaré section t = const (mod T ) of the system (2.1) for ε = 0 (a) and
ε �= 0 (b–d). Only in case of (d) we have homoclinical chaos



Stabilized Chaos in the Sitnikov Problem 303

side values of inequality that is greater than s2. It is derived that I[g(t0)] +
I[g∗(ω, t0)] = s2 + χ = const, where χ, s2 ∈ IR+. Therefore I[g∗(ω, t0)] =

const− I[g(t0)]. On the other hand, I[g∗(ω, t0))] = −
∞∫

−∞

f0 ∧ f∗dt. We choose

f∗ (ω, t) from the class of functions that are absolutely integrable on an infi-
nite interval such that they can be represented in Fourier integral form. Then
f∗ (ω, t) = Re{Â(t)e−iωt}. Here we suppose that Â(t) = (A(t), A(t)) i.e. the
regularizing perturbations applied to both components of (2.2) are identical.

Therefore −
∞∫

−∞

f0 ∧
{
Â(t)e−iωt

}
dt = const − I[g(t0)]. The inverse Fourier

transform yields: f0 ∧ Â(t) =

∞∫
−∞

(I [g (t0)] − const) eiωtdω. Hence,

A(t) =
1

f01(x) − f02(x)

∞∫
−∞

(I [g (t0)] − const) eiωtdω. Here A(t) can be inter-

preted as the amplitude of the “stabilizing” perturbation. Thus, for system
(2.1) the external stabilizing perturbation has the form:

f∗ (ω, t) = Re

⎡
⎣ e−iωt

f01(x) − f02(x)

∞∫
−∞

(I [g (t0)] − const) eiωtdω

⎤
⎦. In conserva-

tive case const=0. From the physical point of view the dynamics of the chaotic
system are stabilized by a series of “kicks”. The orbit that was chaotic and be-
came regular under influence of the external perturbation we call the stabilized
orbit.

Let us now consider two bodies of mass m that are placed in the vicinity
of the stable triangular Lagrange points of the Sitnikov problem (as shown in
Fig. 2). Here we treat only the hierarchical case : µ � m � M . In the new

L 5

M

m

M

m L 4

Z

Z

Fig. 2. Geometry of the Extended Sitnikov problem
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configuration we can achieve the situation when the influence of bodies placed
close to the triangular Lagrange points to the particle µ can be presented as a
series of periodic impulses. Taking into account the new configuration (Fig. 2)
we may say that there is a connection between the extended elliptical Sitnikov
problem and the motion of the chaotic nonlinear pendulum with an external
impulse-like perturbation. The Hamiltonian of such system changes to

H(u, p) = H0(u, p) + e

[
H1(u, p, t, e) +

+∞∑
n=−∞

δ(t− nτ)

]
, (2)

where τ is the duration of the impulsive forces that the particle µ experiences
from bodies in the vicinity of L4 and L5. Now taking into account the result
from the first part of this section we conclude that the forces which the par-
ticle experiences from bodies in the neighborhood of L4 and L5 act on the
chaotic behavior of µ as an external stabilizing perturbation and the system
(2) represents the system with stabilized chaotic behavior that corresponds to
the stabilized orbits in the extended Sitnikov problem. The extension of the
analysis carried out above to the corrections of higher order in ε of the (1)
and numerical verification of the obtained results could be found in [16].

In summary, on the basis of the elliptic Sitnikov problem we constructed a
configuration of five bodies which we called the extended Sitnikov problem and
analytically showed that in this configuration along with chaotic and regular
orbits a new type of orbit (stabilized) could be realized. We thank Carles Simó
and David Farrelly for valuable discussions. A. Dzhanoev acknowledges that
this work is supported by the Spanish Ministry of Education and Science un-
der the project number SB2005-0049. Financial support from project number
FIS2006-08525 (MEC-Spain) is also acknowledged. This work was supported
in part by the Cassini project.
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