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Abstract
Some chaotic properties of a family of stadium-like billiards with parabolic
focusing components, which is described by a two-dimensional nonlinear area-
preserving map, are studied. Critical values of billiard geometric parameters
corresponding to a sudden change of the maximal Lyapunov exponent are
found. It is shown that the maximal Lyapunov exponent obtained for chaotic
orbits of this family is scaling invariant with respect to the control parameters
describing the geometry of the billiard. We also show that this behavior is
observed for a generic one-parameter family of mapping with the nonlinearity
given by a tangent function.

PACS numbers: 05.45.−a, 05.45.Pq, 05.45.Tp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A two-dimensional billiard consists of a domain Q with a piecewise-smooth boundary ∂Q

inside which a point mass (billiard ball) moves freely along straight lines with a constant
velocity. Reaching the boundary, the particle is reflected from it elastically such that the
normal component changes its sign while the tangent one is preserved. This condition leads
to the following consequence: the incidence angle is equal to the angle of reflection [1].

In the contemporary form, the notion of billiard is known since Birkhoff [2] who issued
the challenge of the billiard ball motion a manifold with an edge. A more complete analysis
regarding the mixing property in hard ball systems has been performed by Krylov [3]. However,
thanks to the papers of Sinai [4, 5], who developed some mathematical ideas for the study of
ergodic properties for a dispersing planar billiards, a new epoch in the rigorous analysis of
billiards began.
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(a) (b)

Figure 1. A stadium-like billiard and its geometric parameters. (a) Bunimovich stadium with
fully chaotic properties. (b) A billiard corresponding to a nearly integrable system (b � l).

These ideas led to an avalanche-like growth of physical and mathematical investigations
of billiard models. A remarkable advance has been achieved in a solution, in some form
concerning the Boltzmann ergodic hypothesis for the dynamics of hard ball gases [4].
Nowadays the study of billiards relates to such fields as non-equilibrium statistical mechanics
[1], hyperbolic systems [6, 7], optics [8, 9] and several physical experiments such as microwave
billiards [10, 11], ultra-cold atoms trapped in a laser potential [12–15] and also mesoscopic
quantum dots [16].

All planar billiards can be subdivided into dispersing, focusing and neutral. Dispersing,
sometimes also called as Sinai billiards, consists of both dispersion and neutral components.
One popular example of such billiards is Lorentz gas [1, 4]. On the basis of the analysis of
a 2D Lorentz gas, it has been proved that the dynamics of purely deterministic systems
may be ergodic with mixing and similar to the Brownian motion [17]. The boundary
of focusing billiards consists of only focusing components or focusing components which
are connected by straight lines. Typical examples of such billiards belong to Bunimovich
[18, 19]. This billiard includes two arcs and two parallel segments joining them (see figure 1)
and therefore looks like a stadium. For such a billiard it was proved that for some geometric
parameters a, b and l it possesses the property of ergodicity and mixing. Conditions of the
chaoticity in 2D plane billiards are described in [1].

The chaos generated in dispersing and focusing billiards is different. In the former case,
two narrow beams of billiard particles being reflected from a dispersing component will be
diverged. In the latter case, after the reflection, two parallel beams converge in a focusing
point. Chaos in such billiards appears if the time, during which the beam is diverged, is
larger than the convergence time. Thus, depending on the billiard geometry one can obtain a
principal difference in the particle dynamics.

In general, dynamics of the billiard particle may be of three qualitatively different kinds:
(i) completely integrable, i.e. regular; (ii) ergodic with mixing; and (iii) depending on initial
conditions, regular or mixing. The regular dynamics is inherent in billiards with the boundary
in the form of a circle and ellipse [1]. Sinai billiard and Bunimovich stadium, see figure 1(a),
possess ergodicity and mixing properties [1, 5, 17, 19]. The third kind can be observed in
billiards of many configurations (see, e.g., [7, 20, 21]). In particular, the Bunimovich stadium
at certain parameter values (figure 1(b)) has both regular and mixing particle dynamics. For
such billiard systems, a set of Komolgorov–Arnold–Moser (KAM) islands can be observed.
They are usually surrounded by chaotic layers and invariant spanning curves (also called
invariant tori), separating different regions of the phase space.
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Often, the dynamics of the system depends on the control parameters. Particularly,
such parameters can control the intensity of the nonlinearity of the system and, as they
change, average quantities of the dynamics can experience subtle modifications, therefore
characterizing a phase transition [22]. Many of these transitions can be described using
scaling arguments where critical exponents play an important role in the description of the
average properties. In particular, a phase transition from integrability to non-integrability
can be studied [8], and therefore classes of universality can be obtained [23]. The scaling
formalism has been shown valid to describe several different kinds of phase transitions in
billiard systems considering both static [8], time-dependent non-dissipative [24, 25] as well
as dissipative cases [26–28].

In this paper, we consider a family of stadium-type billiards with fixed parabolic
boundaries. We show that geometric parameters of this family can be rescaled in the sense
that the maximal Lyapunov exponent of chaotic components of the billiard map is scaling
invariant under the billiard geometry.

The organization of the paper is given as follows. In section 2, we carefully discuss the
construction of the map which describes the dynamics of billiard particles. Description of a
transition from local to fully chaotic dynamics is also presented and is based on Bunimovich’s
defocusing mechanism. Section 3 presents our numerical results related to calculations of the
maximal Lyapunov exponent. A discussion concerning scaling invariance is given here as well
as some numerical results for the deviation of the average angle between the trajectory and the
vertical line at the collision point. We also give a generalization of the mapping and discuss
similar transition for a one-parameter family of mapping. Final remarks and conclusions are
drawn in section 4.

2. A family of maps for stadium-like billiards

In this section, we discuss in detail how to construct the corresponding family of maps that
describe the dynamics of the billiard particle. Suppose that the stadium family has the shape
shown in figure 1(b). Then, for b � a � l, the billiard loses the K-property and turns out
to be a nearly integrable system. In this case, its phase space consists of stable fixed points
surrounded by KAM islands where the dynamics of the particle is regular, and a chaotic sea
that is characterized by a positive Lyapunov exponent.

As usually considered in the literature, to analyze the billiard system, we take into
account only collisions with the focusing components, i.e. consider the unfolding of the
billiard table (see figure 2). Let us introduce the coordinates as shown in this figure. The
motion of the billiard particle inside the billiard area Q (see figure 1) is given by a map
(xn+1, ψn+1) = T (xn, ψn), where xn is a collision point taken as mod a, and ψn is the angle
between the particle trajectory and the vertical line. The angle ψ is measured counter-
clockwise.

Suppose now that the focusing components of the billiard boundary are parabolic.
Moreover, assume that they are described by a quadratic function of a general type

f (x) = Ax2 + Bx + C, (1)

where A, B and C are constants and can be determined by boundary conditions. Considering
the case where f (0) = 0 and f (a) = 0, it is easy to see that C = 0 and B = −Aa. For
the case of f (a/2) = −b, one can obtain that A = 4b/a2 and B = −4b/a. Replacing the
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Figure 2. Coordinates in a stadium unfolding and its dynamical variables.

expressions obtained from the boundary conditions above in equation (1), we arrive at the
equation for the parabolic boundary:

χ(x) = 4bx

a2
(x − a), (2)

which describes the equation of the lower part of the boundary. Applying the procedure in
a similar way, but taking into account the negative sign in the quadratic term and a vertical
translation of l, one can easily obtain the equation of the upper boundary.

Since we know the analytical expressions of the boundary, the next step is to obtain the
map T. From geometrical considerations, as shown in figure 2, and assuming that l � b, we
can see that

xn+1 = xn + l tan ψn. (3)

We would like to emphasize that the condition l � b, corresponds to an approximation of the
real billiard model.

To obtain ψn+1, we first define an auxiliary function β(x) = arctan χ ′(x), which is the
slope of a tangent line at the collision point with the boundary. Thus, expanding β(x) in Taylor
series, taking the lower order term and taking into account equation (2), we have

β(x) ≈ 4b

a2
(2x − a).

Considering that the angles γ ∗ and γ are obtained from the normal line as shown in figure 2,
one can see that

ψn+1 + θ + βn+1 = π

2
,

and γ ∗ +θ = γ +θ = π/2. From these expressions we found that βn+1 +ψn+1 = γ . Therefore,
ψn+1 = 2γ − ψn. Defining a dimensionless variable ξ = x/a with ξ ∈ [0, 1) and using
equation (3), we obtain the known map for the stadium-like billiard with static parabolic
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(a) (b)

(c) (d )

Figure 3. Time evolution of a single initial condition for the static stadium-like billiard with
parabolic boundaries. The control parameters used were a = 0.5, l = 1 and (a) b = 0.07;
(b) b = 0.05; (c) b = 0.01 and (d) b = 0.005. In particular for (c) we have the fixed points of
period 1 labeled as circles, period 2 represented as squares, and period 3 identified as diamonds.

boundary, that is the same map obtained in [29]:

T :

⎧⎪⎪⎨
⎪⎪⎩

ξn+1 = ξn +
l

a
tan ψn mod 1

ψn+1 = ψn − 8b

a
(2ξn+1 − 1).

(4)

Since the stadium billiard is axial-symmetric, the transformation T (ξn, ψn) = (ξn+1, ψn+1)

should have a symmetry with respect to ξ → 1 − ξ and ψ → −ψ . Therefore, it is enough to
obtain results for the region of a non-negative value of ψ .

Figure 3 shows the evolution of one initial condition chosen in the chaotic sea, for very
long time in the phase plane for different control parameters. In particular for figure 3(c), we
show evolution of some initial conditions chosen near the fixed points. The same procedure
shown in figure 3(c) can be extended to figures 3(b) and (d). One can see that as the parameter b
assumes large values, the chaotic component of the phase space is larger. However, as the
control parameter b is reduced, keeping fixed both l and a, more stable islands appear in the
phase space. Also, invariant curves appear corresponding to regular oscillations. Thus, a
phase transition from global chaos to partially chaotic dynamics is observed.
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As is known [30], the transition to fully chaotic dynamics takes place when all the stable
fixed points lose their stability; thus, only unstable orbits are present in the phase space.
Therefore, in order to apply the stability criteria we must first obtain the fixed points for the
map given by equation (4). Their expressions are ξ ∗

n = 1/2+m and ψ∗
n = arctan(ma/l), which

are indeed elliptical points. The parameter m ∈ Z corresponds to the number of mirrored
stadiums that the particle went through (using the unfolding method) before colliding with the
other focusing boundary.

The stability of the period-1 fixed points is obtained by the eigenvalues of the Jacobian
matrix:

J =

⎛
⎜⎜⎝

∂ξn+1

∂ξn

∂ξn+1

∂ψn

∂ψn+1

∂ξn

∂ψn+1

∂ψn

⎞
⎟⎟⎠ ,

where
∂ξn+1

∂ξn

= 1,
∂ξn+1

∂ψn

= l

a cos2 ψ∗
n

,

∂ψn+1

∂ξn

= −16b

a
,

∂ψn+1

∂ψn

= 1 − 16bl

a2 cos2 ψ∗
n

.

Since det J = 1, the map preserves the area in the phase space. If | Tr J |� 2, then all the
stable fixed points bifurcate and become unstable. This leads to

4bl

a2
> 1. (5)

If the inequality given in (5) holds, then global chaos, in the sense that no stable periodic
fixed points exist, is observed in the system described in equation (4). In billiards which
have focusing components of a constant curvature, the particle dynamics is chaotic if all these
components complemented up to a circle belong to the billiard table Q [31]. The inequality
given in (5) is approximately the same condition where the Bunimovich defocusing mechanism
[1, 31] takes place for the classical stadium billiard (see figure 1(a)). This mechanism basically
consists of a narrow parallel beam of rays, that after being focused due a reflection with the
focusing boundary may pass through a focusing point and become divergent provided that a free
path between two consecutive reflections from the boundary is long enough. The mechanism
of defocusing works under the condition that divergence prevails over convergence.

3. Numerical results

We start the section by discussing our numerical results for the positive Lyapunov exponent
of chaotic components of the phase space. The Lyapunov exponent has been widely used to
quantify the average expansion or contraction rate for a small volume of initial conditions.
If the Lyapunov exponent is positive, the orbit is said to be chaotic. On the other hand, a
non-positive Lyapunov exponent indicates regularity and the dynamics can be in principle
periodic or quasi-periodic.

The Lyapunov exponents are defined as follows [32] (see for example [33, 34] for
applications in higher dimensional systems):

λj = lim
n→∞

1

n
ln

∣∣�n
j

∣∣, j = 1, 2,

where �n
j , are the eigenvalues of the matrix M = ∏n

i=1J (ξi, ψi) and Ji is the Jacobian matrix
evaluated over the orbit. Figure 4 shows the behavior of the average value of the positive
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Figure 4. Plot of λ̄ × b. The sudden change characterizes the transition from chaos to stability.
The control parameters used were a = 0.5 and l = 1. The zoom-in shows the transition better,
where �b = 10−4.

Lyapunov exponent as a function of the control parameter b of the map given in equation (4).
For this plot, we kept fixed l = 1 and a = 0.5. Each point in the figure was obtained for seven
different initial conditions randomly chosen along the chaotic component iterated up to 108

collisions with the boundary (i.e. iterations for the map in equation (4)). We emphasize that
no more statistics are needed because of the excellent convergence of the positive Lyapunov
exponent as a function of time. To comment on this, given an initial condition in the chaotic
sea, the time evolution of the Lyapunov exponent fluctuates for short time and then converges
to a constant plateau for about 104 iterations of the mapping. It also stays constant for larger
iterations. Other initial conditions chosen in the chaotic sea exhibit similar behavior therefore
converging then to a very near plateau of the previous initial condition within a small uncertain
numerical range. Also, long time simulations of collisions assure a good convergence of the
algorithm. The error bars in figure 4 correspond to the standard deviation of the seven samples.
Similar procedures analyzing transitions as a function of the maximal Lyapunov exponent were
considered previously [35, 36].

We see that there is a sudden change in λ̄ when the transition to global chaos occurs
(absence of periodic and stable fixed points), i.e. when the defocusing mechanism starts
to work. For fixed a and l, the critical value, say bc, where this transition occurs is
bc = 0.0625. The zoom-in shown in figure 4 corresponds to the amplification of the
behavior of λ̄. The step used in the parameter b was �b = 10−4, leading to a very accurate
investigation.

The sudden jump in the behavior of λ̄ is also observed for other different combinations
of the control parameters. If the control parameter l is raised with a fixed, according to
the condition given in equation (5), the transition is observed for a smaller b. Figure 5(a)
shows several curves of λ̄ × b for different values of l. All curves exhibit qualitatively
the same general behavior; however, the sudden transition on λ̄ occurs at different critical
parameters bc. For the limit b → 0, the Lyapunov exponent tends to zero, thus leading to the
regular case. As far as we have observed, the transition is smooth and the Lyapunov exponent
tends to zero monotonically.
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Figure 5. Plots of λ̄×b. The control parameters used were (a) a = 0.5 and l = 1, l = 10, l = 100
and l = 1000; (b) l = 1 and a = 0.1, a = 1 and a = 10.

One can ask about the transition as a function of the billiard parameter a. Indeed, the
same general behavior is observed. Figure 5(b) shows a plot of λ̄ × b for a fixed l = 1 and
three different values of a, as labeled in the figure. The sudden change is evident.

The behavior shown in both figures 5(a) and (b) indicates that λ̄ seems to be a scaling
invariant. In fairness, after rescaling the axis properly by bl/a2, a universal representation for
all curves is obtained as shown in figure 6. We see that all curves of λ̄, obtained for different
control parameters, merge together in a perfect collapse of a single and universal plot. This
is a clear confirmation that λ̄ is a scaling invariant with respect to the transformation given in
equation (5).

We can also characterize the behavior of the deviation of the average angle, called ω, near
the critical region where the defocusing mechanism holds. We define ω as

ω(n, l, a, b) = 1

M

M∑
i=1

√
ψ2

i (n, l, a, b) − ψi
2
(n, l, a, b), (6)

where M corresponds to an ensemble of different initial conditions while the average angle ψ

is obtained by

ψ(n, l, a, b) = 1

n

n∑
i=1

ψi. (7)

Equation (6) was iterated up to 108 collisions of the particle with the boundary of the
billiard, using an ensemble of M = 5 × 103 different initial conditions chosen along the
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Figure 6. Universal plot for different curves of λ̄ as a function of the rescaling parameter bl/a2.

Figure 7. How the defocusing mechanism affects the behavior of ω curves, characterizing the
transition from fully to partially chaotic dynamics. The control parameter b is labeled in the figure
while a = 0.5 and l = 1.

chaotic sea. Figure 7 shows the behavior of ω as a function of n for different values of the
control parameter b, as labeled in the figure. Since the geometrical parameters are all scaling
invariant, we decided to vary only the parameter b, thus keeping a and l constant.

We see in figure 7 three different kinds of behavior according to the control parameter.
When b is chosen such that 4bl/a2 > 1 (absence of stable periodic fixed points), ω has
an initial growth and, after some a short number of collisions, bends toward a regime of
saturation for large values of n. For such behavior, ω is restricted to a range ω ∈ (0.8, 1). For
this situation, the defocusing mechanism is working.

9



J. Phys. A: Math. Theor. 44 (2011) 175102 A L P Livorati et al

Figure 8. Behavior of λ̄ × K . A zoom-in shows amplification of the sudden jump, near the
criticality characterizing the transition from fully to partially chaotic dynamics as a function of the
rescaling parameter K.

When b is set to give 4bl/a2 ∼= 1, the curves of ω start to grow for the regime of small n
and then have a sudden decay, thus converging to a constant plateau in the range ω ∈ (0.1, 0.3).

Finally, when 4bl/a2 < 1 (defocusing mechanism is not working), the ω curves are
almost constant for all values of n. Moreover, they are all confined in the range below
0.1 implying that the average angle ψ is very small.

Let us now discuss a little more deeply a possible reorganization of mapping (4) in a generic
family of one-parameter mapping. Defining conveniently the parameter pn+1 = 2ξn+1 − 1 and
In+1 = (8b/a)pn+1 and setting K = 16bl/a2, the mapping (4) is rewritten as

T :

{
In+1 = In + K tan(pn)

pn+1 = pn − In+1
. (8)

For this new mapping, all period-1 fixed points become unstable for K > 4 [37]. A plot
of λ̄ × K is shown in figure 8. A sudden jump is also evident for K ∼= 4 which confirms
the sudden increase in λ when the stable fixed points lose their stability, thus leading the
dynamics to be fully chaotic. The zoom-in shown in figure 8 shows such a transition better.
In principle, it is expected that such a generalization can also be applied for a whole family of
one-parameter mappings with a nonlinearity given by a tangent function.

4. Concluding remarks

In general, the universality phenomenon is inherent in wide kinds of dynamical systems where
chaos is observed. As is known, a quite natural idea lies at the heart of the universality: certain
properties of dynamical systems are completely repeated at several scalings. Specifically, the
scaling procedure allows us to understand the integrability–chaos transition. Therewith, the
staggering aspect of this approach is quantitative descriptions.

The scaling formalism may also provide a useful implement in the characterization of
billiard systems. In particular, this technique is useful for the explanation of their chaotic
properties. It makes it possible to generalize and describe a quite large class of the billiard
models for which chaos is inherent.

In this paper, we have investigated the behavior of the maximal Lyapunov exponent
for chaotic orbits along the chaotic sea in a stadium-like billiard with parabolic boundary.
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A transition from stability to chaos was discussed based on the Bunimovich defocusing
mechanism. A sudden transition was observed for the positive Lyapunov exponent near the
criticality where the defocusing mechanism works. The behavior of the Lyapunov exponent
was shown to be scaling invariant with respect to the control parameters of a family of stadium-
like billiards with parabolic components. We demonstrated that the increase of chaoticity in
such a family obeys certain scaling rules. In other words, under rescaling of the billiard
parameters a universal behavior of the maximal Lyapunov exponent is observed. This sudden
jump was also observed for a generic rewriting of the stadium mapping leading to a family of
one-parameter map.
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