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We consider diffusion limited aggregation of particles of two different kinds. It is assumed that a particle of
one kind may adhere only to another particle of the same kind. The particles aggregate on a linear substrate
which consists of periodically or randomly placed particles of different kinds. We analyze the influence of
initial patterns on the structure of growing clusters. It is shown that at small distances from the substrate, the
cluster structures repeat initial patterns. However, starting from a critical distance the initial periodicity is
abruptly lost, and the particle distribution tends to a random one. An approach describing the evolution of the
number of branches is proposed. Our calculations show that the initial patter can be detected only at the
distance which is not larger than approximately one and a half of the characteristic pattern size.
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I. INTRODUCTION

It is well known that diffusion limited aggregation �DLA�,
first proposed by Witten and Sander �1�, is a quite suitable
model of a number of physical phenomena. For example, it
describes kinetic processes of the growth of electrodeposited
dendrites, colonies of bacteria, viscous fingers in fluid mix-
tures, etc. Such a variety of applications induced theoretical
and numerical analyses of DLA, and at present it is a well-
studied model which has been verified on various theoretical
and experimental levels �from the mean-field approach to the
detailed microscopic representation�. A comprehensive re-
view can be found, for instance, in the book �2�.

Generalization of DLA can provide a proper description
of more complex pattern formation processes �see, e.g.,
�3,4��. This interest was inspired by the emergence of micro-
scale and nanoscale structures, which are built by deposition
of diffusing particles on a surface. In particular, the authors
of the paper �5� experimentally studied layer-by-layer depo-
sition and investigated the cluster structure in each layer.
Moreover, there are important biophysical and biotechno-
logical examples: the formation of self-assembled patterns
such as biomimetics and biominerals �6,7�; technologies of
fabrication and usage of templates for the cell or protein
aggregate formation �8–10�, etc. Finally, the formation of
clusters on a given pattern can serve as a tool for the ampli-
fication of scattered or emitted signals �11�.

A natural generalization of the classical DLA is a multi-
component cluster formation. In this case the growing struc-
ture is created from distinct kinds of particles which interact
with each other in different ways. For the multicomponent

DLA, random deposition of particles on the growing cluster
changes the particle distribution in layers so that the initial
pattern becomes more and more fuzzy with the distance from
the initial germ. This induces questions about the influence
of the deposition on the structure of layers and about the
competing roles of the growth and diffusion processes in the
formation of multilayer clusters.

The DLA model of two noninteracting kinds of particles
was advanced in the paper �12�. The authors showed that the
branches of two kinds can coexist and unrestrictedly grow if
and only if the particles of different kinds appear in the sys-
tem with the equal probability. A more detailed description of
the aggregation of various kinds of particles was proposed in
�13,14�, where it was argued that if the branches of various
kinds are impenetrable then the structure of aggregates is
completely determined by initial fluctuations. Recently it has
been shown �15� that the fractal dimension of a multicompo-
nent DLA cluster can be found by means of the coarse-
grained mean-field approach. This method allows correct es-
timations of the fractal dimension even if we neglect the
fluctuations in the distribution of particles.

In the present paper we consider two-component DLA on
a substrate �germ� which consists of periodically or ran-
domly distributed particles. We assume that new particles of
both kinds arise with the same probability and can aggregate
only on the particles of the same kind. The number of initial
single-kind patches on the substrate determines the maximal
number of branches which can appear in the formed cluster.
However, is the substrate contains short patches then in a few
neighbor layers initial periodicity is lost, and we observe a
random particle distribution. Otherwise, if the initial charac-
teristic size of patches is large enough then the pattern peri-
odicity persists until a certain layer. In the further layers the
periodic structure becomes more and more fuzzy and the
particle distribution tends to a random one.

To analyze the scaling properties of this process we used
two characteristics: the number of branches at a certain dis-
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tance from the substrate and the spectrum of the wavelet
transform with Haar basis. Both approaches show self-
similarity of the clusters. The wavelet analysis shows that at
the distance larger than approximately 3/2 of the initial patch
size the branch distribution becomes indistinguishable from a
random one.

II. MODEL

As a model of layer-by-layer random deposition on a
given initial matrix, we consider a two-component off-lattice
DLA process in cylindrical geometry. Particles of two non-
interacting kinds �marked as gray and black �red and black in
color online version�, see Fig. 1� randomly walk and aggre-
gate on initial substrate in a rectangular area of height H and
width W with lateral periodic boundary conditions.

An initial pattern �Fig. 1�A�� is formed by particles of two
kinds, which are periodically or randomly distributed along
the bottom side of the rectangle. A new particle of a ran-
domly chosen kind appears at the upper side of the rectan-
gular area and diffuses within it. If this particle leaves the
area across the upper side, then we generate a new one. Col-

liding with a seed of another kind, the particle is reflected
and proceeds its motion. Upon a collision with a seed of the
same kind, it sticks and becomes a part of the cluster. After
aggregation a new particle appears at the upper side and so
on. As a result, branches of different kinds grow on the initial
substrate �Figs. 1�B�–1�D��. To avoid the domination of par-
ticles of one kind �12�, we assume that the appearance of
particles of every kind is equiprobable.

In our simulation, the height H of the rectangle is equal to
the fourfold maximal cluster height �which is 500 particle
diameters�, and the width W is equal to 4096 particle diam-
eters. Also, to enhance our simulations we used a few im-
provements of the algorithm. First, the particle wandering
within a “fjord” composed of particles of another kind may
dramatically increase the simulation time. To avoid this we
limit the particle lifetime by 50 000 steps. Second, we dy-
namically change the step size of the random walk, increas-
ing it far from clusters and reducing it up to 0.1 of the par-
ticle diameter in the vicinity of clusters �16�. To control the
finite-size effects we repeated the same simulations on two
times shorter substrates �W=2048�. These experiments show
the same results until the number of cluster brunches is larger
than 10. Thus before this threshold the influence of finite-size
effects is negligible.

To analyze the evolution of the branch distributions we
simulate the growth of clusters on random and periodical
substrates �Fig. 1�A��. In the former case particles of both
kinds are initially randomly distributed on the line. In the
latter case, they are placed periodically so that N particles of
one kind alternate with N particles of another kind. Thus, the
period of such patterns is T=2N. We perform simulations for
the periods T=2, 4, 8, 16, 32, and T=64 particles.

The limitation in the period length �T�64� is determined
by the finite size of substrates and periodic boundary condi-
tions. This periodicity implies that the actual number of
branches will always be integer.

Thus our results are valid until the number of branches is
essentially larger than one. In fact, see below, it is possible to
neglect the boundary effects until the cluster includes at least
ten branches.

For numerical analysis, we discretized the distance from
the substrate using the particle diameter as a minimal unit of
length. Thus, we define a set of horizontal layers with the
height of one unit, which are numbered in accordance with
their distance from the substrate. The substrate is located in
the first layer.

III. CLUSTER MORPHOLOGY

Apparently, with an increase in the distance from the sub-
strate, the influence of initial patterns vanishes, and the ini-
tially periodic branch distribution becomes more and more
random. Figures 1�B�–1�D� show that the initial size of
monocolor patches on the substrate plays a crucial role for
the cluster morphology. If a substrate has a short period �T
�4� then the initial periodic structure is rapidly lost. In fact,
for T=2 the distribution of colors appears to be random al-
ready in the second layer. However, if T�8 then a DLA
cluster can develop inside of each monocolor region, pre-
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FIG. 1. �Color online� �A� Periodically and randomly assembled
substrates of particles of two noninteracting kinds �red �gray in
print� and black�. ��B�–�D�� Typical DLA clusters on different sub-
strates: T=2, T=32, and random initial distribution, respectively. To
be more visible, width W of the initial substrate consists of 512
particles �i.e., 1/8 used for numerical simulations�.
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serving its initial periodicity until a certain layer.
The average mass of cluster layers gives a rough charac-

teristic of clusters on different initial substrates. On random
and short-periodic �T�4� substrates the mass of layers de-
cays as a power law M�n��n�m, where �m=−0.39, thereby
resulting in the fractal dimension D�1.61 of these clusters.

This value is close to the fractal dimension of multicom-
ponent DLA clusters in radial geometry �15�. As shown in
this article, an additional screening by branches of different
kinds decreases the fractal dimension in comparison with the
standard value 1.78.

By contrast, the long-periodic �T�8� substrates lead to
sparser aggregates. The main reason is that every monocolor
patch on the substrate gives rise to a single DLA branch
which, attaching almost all particles of the same kind, shades
its base. Therefore, the wider the initial monocolor patches,
the smaller the density of the cluster arising on this substrate.
Note that from a certain layer the layer mass approaches that
obtained for randomly assembled substrates �black line in
Fig. 2�.

More information about the cluster morphology we can
obtain evaluating the number of different branches. For in-
stance, in radial geometry this number increases with the
distance from the cluster center �17�. By contrast in cylinder
geometry, the number of branches decreases with the layer
number because branches of the same kind can merge, stop-
ping growth of other branches squeezed between them. To
evaluate the number of branches, we trace the colors of par-
ticles along each layer and register changes of the colors.
Thus, we combine two branches of the same kind into one if
there is no branch of another kind between them in a certain
layer. In other words, we assume that these branches merge.
This procedure is correct in the layers where the aggregation
has already stopped, however it underestimates the number
of branches for those regions of cluster which actively ad-
sorb new particles.

Figure 3 shows the average number of branches as a func-
tion of the layer number. As expected, for all initial distribu-
tions this value decreases. However, we want to highlight
several aspects. First, all curves finally approach the curve

obtained on the random substrate. The number of branches,
N decreases with the layer number, following the power law
N�n�� �n+b�−1.2. The initial shift b probably occurs because
initially the particles are distributed without gaps between
them and the transition to a sparse structure takes a few
layers.

Second, the numbers of branches on a random and on a
periodic with T=4 substrate almost coincide. This coinci-
dence apparently arises from the fact that initially these sub-
strates have the same average number �1024� of different
monocolor patches �see Appendix�. Third, if a substrate has
more patches than a random one, then the number of
branches abruptly decreases up to the characteristic value
obtained on the random substrate.

For instance, if T=2 then each patch consists of a single
particle and the number of branches decreases threefold al-
ready in the second layer. Aggregates on substrates with a
large initial period �T�8� have fewer branches and preserve
their periodicity approximately until they have as many
branches as on a random substrate. After this layer, the
branches begin to extinct and their total number decreases
and coincides with the number of branches on randomly as-
sembled substrates. Therefore, the number of branches grow-
ing on a random substrate defines a natural limit, and aggre-
gates preserve their initial periodicity as long as they have
less branches than clusters growing on a random substrate at
the same layer.

IV. WAVELET SPECTRAL ANALYSIS

The number of branches provides just a rough insight into
the cluster structure. More detailed information can be
gained from the spectral analysis.

Divide every layer into W square cells of a unit size. In
each cell of the layer n we define the piecewise-constant
function fn�x� such that f�x� is equal to +1 or −1 if the center
of a gray �red in color online version� or black particle, re-
spectively, is located within the cell, and fn�x�=0 otherwise.
Note that sometimes in our simulations a cell can confine the

FIG. 2. �Color online� The layer mass as a function of the layer
number for clusters growing on periodically and randomly as-
sembled substrates.

FIG. 3. �Color online� The number of branches as a function of
the layer number in clusters growing on periodically and randomly
assembled substrates. The black dashed line shows the power law
N�n�=a�b+x�−1.2, where a=7288 and b=2.74.
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centers of two particles. To resolve this uncertainty we used
the color of the left particle. However, these events rarely
occurred, and thus they cannot influence the final result �18�.

Since the piecewise-constant function fn�x� takes discrete
values �−1,0 ,1� on a uniform grid of cells, for the spectral
analysis it is natural to use the wavelet transform with Haar
orthonormal basis functions,

� jk�x� = �2 j��2 jx − k� ,

where j and k are the integer numbers, which characterize
the scale and the shift, respectively, of Haar wavelet basis
function,

��x� = 	1, x � �0,1/2�
− 1, x � �1/2,1�
0, x � �0,1� .



Every layer includes W cells. Thus, to represent the function
fn�x�, the largest wavelet pattern should have the scaling fac-
tor J=log2 W, and the wavelet expansion of the function
fn�x� reads

fn�x� = c0 + �
j=0

J

�
k=0

W−1

djk
�n�� jk�x� , �1�

where the index n refers to the layer number, c0 is the mean
value of the function fn�x�, and the coefficients

djk
�n� = �

0

W

fn�x�� jk�x�dx

show the partial impact of the wavelet with period T=2 j in
the sites from k to k+T. Thus, the sum of the wavelet com-
ponents with the same scaling factor,

Fj
�n��x� = �

k=0

W−1

djk
�n�� jk�x� , �2�

gives the total impact of wavelets with period T=2 j and rep-
resents a counterpart of an individual harmonic in the Fourier
expansion. Exploiting this analogy, we can refer to the sum

Ej
�n� = �

k=0

W−1

�djk
�n��2 �3�

as a power of the spectral component including all wavelets
with period T=2 j. Thus, the set of values �Ej

�n��, where
j=0,1 , . . . ,J represents the global power spectrum of the
wavelet transform of the layer n.

The power spectrum of the initial substrates with period T
has only a single nonzero component Ej�

�1�, where
j�=log2 T. This component represents the main harmonic of
the initial wavelet spectrum. Other components appear in the
second layer, and their relative impact increases with the
layer number, reflecting the transition from the periodic to
the random structure of clusters.

However, during this transition the value Ej�
�1� dominates,

thereby reflecting the fact that initial periodicity is preserved

in the cluster structure, i.e., the distribution of branches “re-
members” the initial distribution.

Consider now the normalized average power of the main
harmonics:

Ēj��n� =
1

�2 j�−1NT

Ej�
�n�� , �4�

where  . . . � denotes the average over all realizations. To
compare the power of different harmonics on the same scale,
we introduced the specific renormalization factor,

1 / ��2 j�−1NT�. This factor compensates for the differences in
the number of initial periods, NT=W /T, and in the scales of
the basis wavelet functions with various j�.

Figure 4 shows the normalized power of the main har-
monics for periodic substrates �color solid lines� in compari-
son with one harmonic �T=2� on randomly assembled sub-
strates �dash-dotted line�.

On randomly assembled substrates the power spectrum
equally includes all possible periodic components, which
from the outset follow the power law with the slope
�w=0.4 �see dash-dotted black line in Fig. 4�.

Consider how the power of the main harmonics evolves
with layer number for substrates which have large initial pe-
riodicity: T�8. Until the number of branches is less than the
number of branches growing on a random substrate �com-
pare with Fig. 3�, the power of the main harmonics decreases
relatively slow. However, at a critical layer, when this num-
ber is exceeded, this decrease becomes much steeper and the
power of the main harmonics abruptly declines to the level
of other harmonics. Finally, the power of all harmonics goes
over the same power law with the exponent �w=−0.4.

Note that our approach has a few common traits to the
method based on averaged wavelet coefficients, which was
suggested in �19� for the analysis of self-affine time series.
However, in contrast to the this work, we analyze not the
inner structure of a unique function but the set of functions
corresponding to a certain layer of a cluster.

FIG. 4. �Color online� The distribution of normalized global
power spectrum of wavelet components corresponding to the vari-
ous initial periods.
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Thus, we can select three stages. During the first stage the
clusters preserve their initial periodicity and the initial har-
monics prevails. During the second stage the main harmonics
abruptly decreases and some branches rapidly extinct. In the
last stage the distribution of branches becomes indistinguish-
able from a random distribution. If the initial period is small
�T�4� then we observe only the last two stages.

Note that because of the finite cluster height we observe
this behavior only approximately within the first 300 layers.
Afterwards all harmonics abruptly decay. Furthermore, the
substrate width seemingly influences the development of
clusters with initial period T=64.

V. MEAN-FIELD ANNIHILATION

Initially the substrate has an invariance with respect to a
shift by one period length. A particle, which randomly at-
taches to a branch, limits access of other particles to the
adjacent branch and breaks the local symmetry. This process
is stochastic and local changes accumulate and finally lead to
extinction of some branches. As a result, the influence of
initial patterns reduces with distance from substrates.

A rough insight into the dynamics of this process can be
gained by a mean-field approximation arising from the
simple diffusion-annihilation model suggested in �20�.
Namely, if two branches of kind A shade a branch of kind B
between them, then we can write this as the annihilation
process

An + Bn + An = An+1,

where n is the layer number.
Let N�n� be the average number of branches of the same

kind, and let k be the annihilation reaction rate of the
branches. The inverse concentration 1 /c determines the
mean distance between two branches of the same kind.
Therefore, the characteristic time after which two branches
can merge and shade another branch is equal to �n�1 /kc.
Furthermore, the decrease in the concentration should be
proportional to the density of branches. Therefore, the differ-
ential equation of this annihilation process has the form:

Ṅ �
�N

�n
= − kN2.

Solving this equation we obtain

N�n� =
1

k
� 1

N�0�k
+ n�−1

. �5�

This solution qualitatively describes the dependence of
the number of brunches in Fig. 3, it also predicts the initial
shift b=1 /N�0�k. Note that the exponent of this dependence
is integer, which is common for simple mean-field approxi-
mations. However, as the two exponents �−1 and −1.2� are
sufficiently close, this formula gives a good approximation in
a certain range.

VI. DISCUSSIONS AND CONCLUSION

In this paper we analyze the structure of DLA clusters,
growing in a rectangular area with lateral boundary condi-

tions. The clusters are built up by aggregation of particles of
two different kinds on random or periodic substrates. Grow-
ing DLA branches can merge with each other, stopping the
growth of other branches between them. This decreases the
number of distinguishable branches and changes the struc-
ture of the cluster as a whole. Thus, since this process is
stochastic, the influence of initial patterns reduces with dis-
tance from substrates.

In more details, we investigated how the rate with which
the system loses its initial periodicity depends on the dis-
tance from the substrate and showed that there are three char-
acteristic areas. In the first area, which includes first few
layers, the average number of clusters preserves and the
wavelet harmonics corresponding to the initial periodicity
decay slowly. This area exists only if the number of different
patches on the substrate is initially smaller than that on a
randomly assembled one. In the following layers �where the
number of different branches becomes close to that on a
random substrate or in the second layer if this number was
exceeded initially� the initial periodicity drastically decreases
and the distribution of branches approaches to a random one.
Finally, the average number of branches in a layer coincides
with the number of clusters which appear on a randomly
assembled substrate, and their distribution becomes random.
In this area the evolution of the number of branches can be
estimated within the mean-field approach.

From the practical point of view, our results allow to
elaborate a criterion for the validation of experimental meth-
ods for the selection and amplification of micropatterns via
layer-by-layer deposition of specific reagents �see, e.g., �11��.
Figure 4 shows that for every initial period of substrates
there is a maximal layer number, n�, after which the distri-
bution of branches loses initial periodicity and the magnitude
of all harmonics becomes equal. Figure 5 shows that this
value scales with the size of initial patterns. For linear fitting
we exclude T=2, because this distribution loses its regularity
almost in the fist layer, and T=64, because in this case n� is
close to the layers where we observe effects of finite cluster
height. All other points follow a power-law dependence with
the exponent �=1.06. Accuracy of our simulations do not
allow to confirm that n� grows faster than T ���1�. Thus as
an approximate estimation we suggest n�	3T /2. This de-

FIG. 5. The maximal distance n� from the initial substrate after
which the initial periodicity cannot be detected in dependence of the
initial period. The black line is fitting n�=1.46T1.06.
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pendence shows the principal limit for detection of the sub-
strate structure at a certain distance from the substrate.

APPENDIX: NUMBER OF BRANCHES IN RANDOM
DISTRIBUTION

Consider a randomly assembled substrate. The sort of a
particle in each location is randomly assigned with the prob-
ability 1/2. It is evident that the same kind for n successive
particles will be assigned with the probability

Pn =
1

2n .

Thus, the average size of initial clusters of this kind is

S = �
n=1




nPn = �
n=1



n

2n = 2.

Therefore, the average number of clusters on the random
substrate should be the same as we have in the periodic pat-
tern when two particles of one kind succeed two particles of
another kind, i.e., for T=4.
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