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To study and forecast the solar activity data a quite perspective method of singular spectrum analysis
(SSA) is proposed. As known, data of the solar activity are usually presented via the Wolf numbers associated
with the effective amount of the sunspots. The advantages and disadvantages of SSA are described by its
application to the series of the Wolf numbers. It is shown that the SSA method provides a sufficiently high
reliability in the description of the 11-year solar cycle. Moreover, this method is appropriate for revealing
longer cycles and forecasting the further solar activity during one and a half of 11-year cycle.
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It has long been observed that solar activity de-
pends on a number of spots visible on its disk. Dur-
ing about 11 years which is called a solar cycle, this
number varies over a wide range. Accompanying
this process, changes in the structure of magnetic
fields of the Sun affect the Earth climate and have a
probable connection with the natural catastrophes.
In addition, intensity of the solar radiation (the fre-
quency of the Sun flares, etc.) apparently exerts an
influence on all areas of human life including social-
historical activity. Thus, in view of the quite large
significance of the magnetic activity of the Sun its
prediction is a subject of much current interest.

At the present time, to describe the dynamics
of the solar activity many approaches are used.
Among them the Wolf number associated with the
effective amount of the sunspots is much more con-
venience method. The dynamics of the Wolf num-
bers has more or less quasiperiodic nature but, ow-
ing to the facts that models of this process do not
take into account many essential factors of the so-
lar magnetic activity, its prediction is difficult. It is
known that during last 250 years the cycle period of
the sunspots changes its value not more than 20%.

At the same time, the amplitude (i.e. the averaged
number of sunspots) has varied over an order or
even more. Detailed models of the solar processes
do not describe such variations.

In the last few years sufficiently many methods
devoted to the prediction and reconstruction (to
the past) the dynamics of the Wolf numbers have
been proposed (see, e.g., [1, 2, 3, 4, 5] and refer-
ences cited therein). It should be noted however,
that these methods have certain limitations and de-
merits. That is the reason why prediction of the
sunspot dynamics based on the data of observations
only (i.e. without a modelling of the process) is a
quite perspective approach. In this way time-series
analysis (see [6, 7, 8, 9, 10, 11]) can give an es-
sential assistance. But in this case there are many
problems related to the fact that the Wolf series is
not strictly deterministic system, it does not have
clearly defined dimension [12, 13], and its length is
not so large.

In the present paper, for investigations of the
Wolf time series a sufficiently efficient method of
singular spectrum analysis is proposed. It is shown
that this method provides a quite high reliability
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in the description of amplitudes of the 11-year so-
lar cycle. Moreover, it is appropriate for revealing
more long cycles and forecasting the further solar
activity during one and a half of 11-year cycle, i.e.
the nearest 16 years.

1 Singular spectrum analysis

The method of singular spectrum analysis (SSA)
[14, 15, 16, 17, 18], which is used in the present
article allows us the following.

• Recognise certain components in the time series
which have been obtained from the observable
at regular intervals;

• Find periodicities that are not known in ad-
vance;

• On the basis of the chosen components to
smooth out the initial data;

• Extract components with the known period;

• Predict the further evolution of the observed
dependence.

The method of SSA is a reasonably new one, but
now it is quite clear that it is sufficiently competi-
tive with numerous smoothing methods [19, 20, 21].
Moreover, in certain cases forecasting the system
evolution on its basis gives much more reliable re-
sults in comparison with the other known algo-
rithms (see [7, 18, 22, 23, 24, 25] and references
therein).

The SSA method is based on the passage from the
investigation of an initial linear series (xi)N

i=1 to the
analysis of a many-dimensional series consisted of
components of some length which contain except for
the value xi, certain quantities xi−j , j = 1, . . . , τ ,
at the previous instants of time.

Let us describe the central steps of the applica-
tion of SSA to a series (xi)N

i=1.
(1) On the first step, a one-dimensional series is

transformed into a many-dimensional one. For such
a transformation it is necessary to take a certain
number of delays τ ≤ [N/2 + 1], where [·] is an in-
teger part, and represent the initial τ values of the

sequence as the first column of some matrix X. For
the second column, the values of the sequence from
x2 to xτ+1 are chosen. Thus, the last τ elements of
the sequence xn, . . . , xN correspond to the last col-
umn with the number n = N − τ +1. Therefore the
transformed series has the following matrix form:

X =




x1 x2 . . . xτ . . . xn

x2 x3 . . . xτ+1 . . . xn+1

x3 x4 . . . xτ+2 . . . xn+2
...

...
. . .

...
. . .

...
xτ xτ+1 . . . x2τ−1 . . . xN




.

It is obvious that for the constructed matrix the
expression ||xij || = xi+j−1 holds. In general, the
matrix X is a rectangular one. But, in a limit case,
i.e. at τ = N/2 and an even N , it degenerates into
a square matrix.

(2) After this transformation, for the matrix X
the corresponding covariance matrix C = 1

nXXT

should be obtained.
(3) Now it is necessary to find eigenvalues and

eigenvectors of the matrix C. For this, the matrix
C should be factored as follows: C = V ΛV T , where

Λ =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λτ




is the diagonal matrix of eigenvalues,

V =
(
V 1, V 2, . . . , V τ

)
=




v1
1 v2

1 . . . vτ
1

v1
2 v2

2 . . . vτ
2

...
...

. . .
...

v1
τ v2

τ . . . vτ
τ




is the orthogonal matrix of eigenvectors of the
matrix C. It is clear that Λ = V CV T ,

∑τ
i=1 λi = τ

and detC =
∏τ

i=1 λi.
(4) For the next step, the matrix V of eigenvec-

tors should be presented as a matrix of the con-
version to the principal components, Y = V T X =
(Y1, Y2, . . . , Yτ ), of the initial series.
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FIG. 1. The data of the average monthly values of the Wolf numbers.

Here Yi, i = 1, 2, . . . , τ , are rows of the length
n. Therewith, the eigenvalues λ1, λ2, . . . , λτ can be
considered as a certain contribution of the principal
components to a general information content of the
series (xi)N

i=1. Then, by means of these principal
components it is possible to reconstruct the initial
matrix X:

X =
(
V 1, V 2, . . . , V τ

)



Y T
1

Y T
2
...

Y T
τ


 =

τ∑

i=1

V iY T
i .

In turn, by the matrix X one can reconstruct
the time series (xi)N

i=1. It should be noted that
for the reconstruction not all principal components
Y1, Y2, . . . , Yτ are usually applied. Only a part of
them can be involved. This depends on the goal
which we pursue and the informative content of the
used components (see [14, 15, 16, 17]). This means
that each vector-row Yi can be considered as a re-
sult of some projection of a τ -dimensional totality
on a direction corresponding to the eigenvector V i.
Thus, the series is presented via a set of τ compo-
nents Yi. Therewith, the weight of the component
Yi in the initial sequence (xi)N

i=1 can be defined by
the corresponding eigenvalue λi which is, in turn,
the eigenvalue of the eigenvector V i.

Each i-th eigenvector includes τ components,

V i =




vi
1

vi
2
...

vi
τ




.
Let us construct a dependence of the component

values vi
k, k = 1, 2, . . . , τ , as a function of their

number: vi = vi(k). Then using the orthogonal-
ity property of eigenvectors, the further analysis of
the sequence (xi)N

i=1 can be performed by means of
diagrams plotted by the analogy with the Lissajous
figure. Namely, along the axes the components vi

k,
vj
k are plotted in pairs. If the constructed diagrams

are similar to a circle, then the functions vi = vi(k),
vj = vj(k) are approximated by certain periodic
functions with almost coincided amplitudes and a
phase lag about a quarter of the period.

Thus, for some pairs of the eigenvectors V i, V j

one can find a value which has a meaning of the
period. Therefore, such a graphical representation
provides a certain estimate of the component fre-
quencies inherent in the initial time series (xi)N

i=1.
For the given parameter τ the number of all pos-

sible pairs of principal components is ∼ τ2. It is
obvious that even for a sufficiently small τ the anal-
ysis of all such pairs is a quite laborious problem.
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FIG. 2. An example of the prediction of the solar activ-
ity for a length of 216 points (18 years) by the average
monthly Wolf numbers. The vertical line corresponds
to the boundary value of the removed points. At the
expansion, 500 components have been applied; in the
reconstruction procedure 150 components have been in-
volved. Numerical analysis has been performed by three
stage: after prediction of the next 72 points recalcula-
tions have been made.

Moreover, at a large values of τ only a small part of
diagrams has a helical form. Thus, before a graph-
ical analysis it would be reasonable to restrict our
search. This can be done if we arrange V i and Yi in
order of decreasing their eigenvalues and consider
only such pairs of eigenvectors which have close
enough eigenvalues λ. In the diagram λ = λ(i) at
a quite large λ these pairs form a decreasing (with
the growth of i) step function.

(5) Suppose now that for the further reconstruc-
tion we have only r leading components. Thus, for
the reconstruction of the initial matrix X one should
use r leading eigenvectors V i. In this case

X̃ =
(
V 1, V 2, . . . , V r

)



Y1

Y2
...

Yr


 =

r∑

i=1

V iYi ,

where X̃ is a reconstructed matrix with n columns
and τ rows. Then the initial time series obtained
from this matrix is defined as follows:

x̃s =





1
s

s∑

i=1

x̃i,s−i+1 , 1 ≤ s ≤ τ ,

1
τ

τ∑

i=1

x̃i,s−i+1 , τ ≤ s ≤ n ,

1
N − s + 1

N−s+1∑

i=1

x̃i+s−n,n−i+1 ,

n ≤ s ≤ N .

Described way of the reconstruction is said to be
a SSA-smoothing of the initial time series (xi)N

i=1

by the leading r components.
(6) In the next stage of the SSA application, a

prediction procedure of the initial time sequence can
be considered (see [25, 26, 27]). This means that the
series (xi)

N+p
i=1 which is the extension of the known

data (xi)N
i=1, is constructed. In turn, extrapolation

to p points forward is reduced to the application of
p times of the prediction procedure to the one point.
The basic idea of the computation of the point xN+1

is the following.
Consider the sequence x1, x2, . . . , xN and con-

struct a sample in the form of matrix X. As a
basis of the surface containing this sample one can
take the chosen before vectors V 1, V 2, . . . , V r of the
matrix C. Let us write the parametric equation

of this surface as S(P ) =
r∑

i=1
piV

i, where a set of

the parameters pi corresponds to the value S(P )
which is a column with τ elements. In this case
the set of parameter values P k =

(
pk
1, p

k
2, . . . , p

k
r

)
corresponds to k-th, k = 1, 2, . . . , n, column of the
matrix X. Therefore, X1 = S

(
P 1

)
, X2 = S

(
P 2

)
,

. . . , Xn = S (Pn).
Now, to predict the value xN+1 it is necessary to

find the (n+1)-th column Xn+1 which, in turn, fits
the parameters

Pn+1 =
(
pn+1
1 , pn+1

2 , . . . , pn+1
r

)
.

Using the data (xi)N
i=1 these parameter values can

be obtained from the expression S(P ) =
r∑

i=1
piV

i.

Thus, the predicting column is written as follows:
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XN+1 = S
(
Pn+1

)
.
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FIG. 3. The leading 50 eigenvalues of the covariance
matrix obtained at the expansion of the average annual
Wolf numbers into 123 components.

Let us introduce the following designations:

V∗ =




v1
1 v2

1 . . . vr
1

v1
2 v2

2 . . . vr
2

...
...

. . .
...

v1
τ−1 v2

τ−1 . . . vr
τ−1


 ;

p̃ =




p̃n+1
1

p̃n+1
2
...

p̃n+1
r


 ; Q =




xN−τ+2

xN−τ+3
...

xN


 ;

Vτ =
(
v1
τ , v

2
τ , . . . , v

r
τ

)
.

The set of the values
(
pn+1
1 , pn+1

2 , . . . , pn+1
r

)
is

easily found as a solution of the system V∗P̃ = Q
with respect to P̃ . Thus, the final expression of the
forecasting value has the following form:

xN+1 =
VτV

T∗ Q

1− VτV T
.

In the simplest case, to predict the next val-
ues it is necessary to change the matrix Q in a
corresponding way and multiply it by the value
VτV

T∗
/(

1− VτV
T
)
. In addition, however for each

predicted point one can completely repeat the SSA
algorithm. Then the matrixes Vτ and V∗ will be
changed.

(7) At the final stage of the SSA application one
should dwell on the choice of the main parameter —
the number of delays τ which are used for the many-
dimensional sample X. As in the case of selection
of the principal components this value essentially
depends on the investigated problem.

Consider the smoothing procedure of a time se-
ries by the SSA method. In this case, as noted
above, selection of a principal component is the fil-
tration of the time series with the transition filter-
ing function in the form of the eigenvector of this
principal component. If the delay value τ is the
greater, the greater the number of parallel filters,
and a bandwidth of each of them is more narrow.
Thus, for a large enough τ we have a sufficiently
efficient smoothing of the time series.

If it is necessary to define unknown (hidden) pe-
riods in the observed sequence then one should take
the value of τ as large as possible. Next, after omit-
ting close to zero eigenvalues, the delay value should
be shortened.

Suppose now that we should select only the one
known periodic component. In this case it is nec-
essary to choose the delay τ which is equal to the
required period.

Finally, let us consider the problem of some ex-
tension of an observed sequence to a given value,
i.e. the problem of forecasting the evolution of the
process under investigation. Then one should take a
maximum allowable value of the delay τ and there-
after select the number r.

2 Forecasting the solar activity
by SSA

To estimate of the practicality of the SSA method
it is necessary to use the time series of a natural ori-
gin. In the present article, as such a time series the
sequence of the Wolf numbers characterised in a cer-
tain way the solar activity was chosen. Taken alone,
the Wolf numbers defined by the visible sunspots
cannot give a quantitative informa-
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FIG. 4. Some of components corresponding to eigenvalues shown in Fig.3. Their percentage in the initial series is
denoted by the parentheses.

tion related to the solar activity. However there is
a large enough correlation between the Wolf num-
bers and the F10.3 emission. That is the reason
why investigations of the relative variations in this
sequence can give a specific information concerning
the solar activity.

For the first time, in 1848 a Swiss astronomer
R.Wolf proposed that a measure of the solar activ-
ity can be characterised by the number of sunspots.
To this end he recommended to consider the union
of the total number of spots visible on the Sun and
tenfold numbers of regions in which these spots are
placed. This last summand should coordinate the
results of measurements performed under several
conditions. Thus, since the year 1849 the results
of daily measurements have become available. Us-
ing more earlier observations and various sources,
R.Wolf has reconstructed the data of the solar ac-
tivity (with an admissible accuracy and negligible
gaps) up to the year 1818. Now the averaged num-
ber of the sunspots is called the Wolf number.

Later the average monthly values of the Wolf
numbers up to the year 1749 (namely this series is

used in the present paper) and their average annual
values up to the year 1700 have been reconstructed.
In the last case however, the error can reach more
than 10 percent. The chosen data covers the wide
time interval without gaps and a quite high time
resolution. The investigated sequence is shown in
Fig.1. The time with the interval of one month is
plotted on the abscissa. The corresponding Wolf
numbers are laid as ordinates.

On the first step of the application of SSA it is
necessary to take the maximum permissible value
of parameter τ . For our investigations we used
τ = 500. This value allows us to make up peri-
odicities up to period of 42 years. The use of the
larger values leads to essential computer problems.
Moreover, increasing the parameter τ (up to 600)
does not yield any significant change in the results
of the first expansion in principal components.

Owing to a large value of τ the dependence of the
roots of eigenvalues of the covariance matrix (or-
dered in decreasing) decays exponentially. In addi-
tion, the sum of the leading five eigenvalues exceeds
99% of their sum total. Coupled with a quite large
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FIG. 5. Dependencies of the 2-nd and the 3-rd components (on the left-hand side) and the 6-th and the 7-th components
(on the right-hand side) shown in Fig.4. The left and the right parts of the Figure correspond to the 1-st and the 3-rd
step-like data of eigenvalues, respectively.

numbers of initial points, this leads to the fact that
the first principal component yields a small enough
smoothing of the initial series, and by means of the
leading four-five components one can reconstruct
this series. Moreover, at small values of the pa-
rameter τ , say at τ = 5, the first component weakly
changes its form. This is due to the fact that the
SSA method is stable with respect to this parame-
ter. Therefore, application of a sufficiently large τ
is justified only for the prediction.

To check possibilities of the prediction let us cut
off the initial sequence of the averaged monthly val-
ues for a length of 216 points (18 years) and re-
construct it by the following way. Evaluate optimal
parameter values of the reconstruction algorithm by
means of an additional truncation and resolve the
obtained series into τ components. Therewith it is
necessary to choose such a number of the leading
components at which we get the best coincidence of
the reconstructed values with the additionally trun-
cated data. Then using the obtained parameters, we
will find the initially shortened part of 216 points.

By means of the direct exhaustion one can define
that the best results we get at r = 150 (the number
of the chosen components). Once again let us take
the reduced sequence (for a length of 18 years) and

apply the chosen r for the prediction. One can fur-
ther improve the quality of the prediction if we will
decompose the predicted interval (216 points) into
subintervals and after prediction of each part calcu-
late the principal components. In the ideal case, af-
ter the prediction of each point it is necessary to re-
alise this process. However, such an approach leads
to an increase of the computer time.

Fig.2. illustrates the reconstructed series at
which recalculations have been realised every 72
points (i.e. 3 times). However, as it turns out,
this result is almost identical to the prediction of
the whole interval of 216 points, without decompo-
sition into subintervals.

Theoretically, one can analyse the series compo-
nents with the aim of detection the existence of the
known and any other periods. However a number of
these periods and thus, the resemblance of the com-
ponents Yi of the initial series makes this analysis
a quite cumbersome procedure. In addition, selec-
tion of sufficiently short periodicities (about several
months) is a very difficult computer task. For these
reasons, the choosing a large enough subinterval of
time is the more simply problem.

Let us consider now a series with the average an-
nual Wolf numbers. This series contains only 248

Nonlinear Phenomena in Complex Systems Vol. 4, No. 1, 2001
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FIG. 6. Dependencies of the 2-nd and the 3-rd components (on the left-hand side) and the 4-th and the 7-th components
(on the right-hand side) at τ = 80.

points. Thus, the maximum allowable value of τ is
123. Choose this value as an initial one. The cor-
responding eigenvalues is shown in Fig.3. The first
number presents the principal component related to
a trend. The following step-like data form the pairs
of components with the numbers 2–3, 4–5, 6–7, 8–9
and 11–12. Beginning with 14-th number this de-
pendence gives way to an exponential tail. Eigen-
vectors for the pairs 2–3, 4–5, 8–9 and 11–12 (see
Fig.4) fit periodicities with 11-year period. The cor-
responding helical dependence for the components
2 and 3 is shown in the left side of Fig.5.

It should be noted that except for the evident
the eleven-year solar cycle it is possible to guess
a supposed eighty-year Gleisberg cycle (see Fig.5).
Here we keep in mind the pair of the eigenvectors 6
and 7. The corresponding eigenvalues is not exactly
equal to each other, i.e. the step-like data is oblique
(see Fig.3) and the phase lag is not π/2. That is
the reason why the form of the function diagram is
not helical. In spite of this fact and a small enough
eigenvalues, it is quite possible to trace a periodicity.

For the best selection of the eighty-year dynam-
ics one can identify parameter τ . By the numerical
analysis we have found that τ = 80 is the most
suitable value. In this case, vectors 4 and 7 are as-
sociated with such a periodicity. The diagram for

4-th and 7-th components is shown in Fig.6. A pos-
sible eighty-year solar cycle obtained by the recon-
struction only via these two components is shown
in Fig.7.

Consider now a much more interesting problem
concerning the possibility of the prediction of the
average annual Wolf numbers by the SSA method.
Shorten this series from the right hand side for a
length of 18 points (that means years) and recon-
struct it. To make this let us truncate additionally
an interval of 11 points and try to restore it in the
best way. Choosing the suited numbers of eigenvec-
tors we will use such a procedure in various parts of
the series.

For the series of 219 points (219 = 248− 18− 11,
where 248 is the number of all points, see above)
the maximal possible τ = 109. As follows from
numerical analysis, prediction for 11 points strongly
depends on the picking of the components. At the
same time, in a sufficiently wide range a qualitative
guide of the prediction is not bad. However, for the
quantitative prediction the given τ is too large. For
the lesser values of τ it is quite possible to find the
necessary number of components. For example, for
τ = 33 and choosing the leading 11-th components
we get fairly good results of the prediction.

Thus, let us use these parameters for the pre-
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diction of the removed 18 points. In contrast to
the case of the average monthly data and τ = 500
now, at τ = 33 we have a possibility to recalculate
eigenvectors with consideration of the last predicted
point. This recalculations can be made at the stage
of the selection of vectors as well as the prediction.
The result of the prediction with the correction at
each step is shown in Fig.8.
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FIG. 7. Reconstruction of the 4-th and the 7-th compo-
nents corresponding 80-year solar cycle

In addition, we have studied a sequence of natural
logarithms obtained from the initial series. Taking
the logarithm is often used at the data processing
(for example, in the case of the correlation analy-
sis) and allows to get more interesting and complete
results. However, eigenvalues and eigenvectors af-
ter such an operation have not principally changed.
Thus, in this case taking the logarithm is not neces-
sary because the basic information can be obtained
from the analysis of the initial series.

In the closing stage let us consider application of
SSA for a real prediction of the solar activity. For
this purpose, the average annual sequence of the
Wolf numbers from the year 1748 to the year 1996
has been chosen. The end of this series corresponds
to a minimum of the solar activity. Therefore it
is interesting to describe the further activity of the
Sun and predict its two next maxima. To realise
this idea it is necessary to extend the average annual
sequence for a length of 18 year points.

We resolved the series into 33 components and

choose for the prediction the leading eleven of them.
The result of the prediction is shown in Fig.9. As
follows from this figure, in the nearest future, in
comparison with the two previous maxima, the Sun
will be in a relatively quiescent state. In addition,
the level of the forthcoming maximum in the year
2011 will not be so high. On the basis of our nu-
merical investigations concerning the application of
SSA, the prediction during more than one and a half
of 11-th year solar cycle is not justified. Neverthe-
less, we believe that the obtained values of the Wolf
numbers shown in Fig.9 are a quite reliable.

For comparison, a series of the average monthly
Wolf numbers has been analysed. However, its in-
vestigation did not yield an essential modifications
to the obtained results.

3 Conclusion

It seems to be true that in the nearest future investi-
gations of time series by means of SSA will occupy a
more important and deserving place among different
ways related to the processing and forecasting many
experimentally obtained sequences. Resolving the
initial series into components the analytical form of
which is not fixed, this method allows us on a quite
high level to reveal periodic subsequences and fore-
cast the dynamics of this series. Therewith, restric-
tions to the numbers of points and characteristic
periods in the investigated data as a rule, is essen-
tially less than at applications of the other methods
(for example, at correlation or Fourier analyses).

In the present article a possibility of the SSA ap-
plication to the sequence of the Wolf numbers char-
acterising the solar activity, is considered. In spite
of a relatively small length of this sequence, SSA
allows to reveal the components corresponding the
known solar cycles and, on the basis of only cer-
tain constituents, admits reconstruction of the data.
Moreover, it is found that by means of SSA it is pos-
sible to extend short time series with an acceptable
accuracy.

Like any other method, SSA is not devoid of
drawbacks. First, there is a certain difficulty in the
problem of revealing unknown frequencies in the
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FIG. 8. Prediction of the solar activity the each-step
correction. 11 in 33 components are chosen. The vertical
line marks the boundary value of the removed 18 points.
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FIG. 9.Prediction of the solar activity up to 2015 year.

investigated sequence. These frequencies can be
more easily obtained by the Fourier analysis. Sec-
ondly, SSA does not contain clear rules concerning
the choice of components, especially in the case of
forecasting. Finally, SSA does not give the correct

prediction of the cycle period. Therefore in the pre-
dicted sequence a systematic phase lag is accumu-
lated. Nevertheless, as follows from the performed
analysis it is a useful supplement to the existing
methods of the experimental data processing.

In the forthcoming investigations devoted to the
analysis of the solar activity, we will consider a pos-
sibility of a certain correction of the cycle phase by
means of additional methods and via special fea-
ture of the sunspot dynamics. Besides, to resolve
this problem one can use an empirical dependence
of the amplitude and the phase of the solar cycle
[28]. Moreover, it seems to be reasonable that it is
quite possible to improve control parameters which
are used in SSA.

On the whole we can say that the described
method of singular spectrum analysis is a suffi-
ciently advantageous and promising way for the pre-
diction of dynamics of the solar activity.
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