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The problem of parametric suppression of deterministic chaos is considered. It is proved that certain
parametric perturbations of a one-dimensional map with chaotic dynamics can lead to a transition of

that map into a regime of regular behavior.

1. INTRODUCTION

In previous papers the problem of suppression of deter-
ministic chaos in dynamical systems has been considered
quite often (see, for example, Alekseev and Loskutov,'™
Alekseev  and Loskutov,”h' Corbet,2 Gribkov  and
Kuznetsov,” Lima and Pettini,* Plapp and Hiibler,” Neymark
and Landa,(’ and Rajasekar and Lakshmanan?). This is due to
the fact that in this field one can get a series of interesting
results concerning, on the one hand, problems in new artifi-
cial intelligent systems creation (Basti e @l.® and Loskutov
and Tereshko”™), and, on the other hand, problems of pre-
diction of chaotic systems behavior when their parameters
are slightly perturbed, and control of chaotic behavior {Ale-
kseev and Loskutov,'” Ott er al,!’ Shinbrot et al,'* Chen
and Dong,'* and Dressler and Nitsche'*).

The phenomenon of degeneration of chaotic dynamics
into a periodic one as the result of purely parametric pertur-
bations of a system with a strange attractor was numerically
investigated by Alekseev and Loskutov,' ™™ and was called
the phenomenon of parametric destochastization. In the
present study we consider this phenomenon analytically and
more accurately. We prove on the example of the logistic

- map that such perturbations really can lead to a suppression
of deterministic chaos and appearance of periodic dynamics.
[Note, that the term “‘stochastic” is often used interchange-
ably with the term “chaotic” to signify deterministic chaos
(Vul ef al."* and Lichtenberg and Lieberman’®), That is the
reason why sometimes we also use the word “destochastiza-
tion” meaning ““the suppression of deterministic chaos.”]

One-dimensional maps are a convenient object for inves-
tigations of nonlinear phenomena. They allowed us to under-
stand many common properties which are inherent in real
systems (Collet and Eckmann,'” Preston,'® Schuster,'” and
Sharkovskii et al.?®). On the other hand, one-dimensional
maps are more easy to study than systems of differential
equations. So, consider a nonlinear one-dimensional map:

xr:+l=f(xn7a)’ (1)

where f is some function and @ is a control parameter. The
dynamics of the map (1), depending on the initial condition
xg and values of the parameter a, may be both regular and
chaotic. (Definitions of these terms are given below.) Denote
the set of values of the parameter @ leading to chaotic dy-
namics of the map (1) by A.. Thus if a e A, then the map
(1) will generate for certain xg, full aperiodic sequences of
points not tending with an increase in # to any periodic orbit.
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Assume that in the map (1) the control parameter a can
vary with cach iteration: a = a,, . This variation may be peri-
odic or aperiodic. In the first case the sequence of values of
the parameter a, will consist of identical subsequences of a
certain length, for exampie T a,#a,, mk<T, m#k,
a,,r=a,, a, *a, for 1<k<T. Suppose now that varia-
tion of the parameter a happens in the set A_, i.e.,, a, €A,
for any #. Then one can show that in the set A there exists
a certain subset (which we shall denote by A ;, for the word
“destochastization”) such that map (1) with a=a,e A ,CA,
will possess periodic behavior. In other words, with periodic
perturbations of the control parameter a of map (1), desto-
chastization takes place. The rigorous consideration of this
phenomenon is given below.

Il. PARAMETRIC CHAOS SUPPRESSION

Let us consider a concrete, well-known, one-dimensional
map—the logistic map. This map is a deeply understood dy-
namical system which can exhibit the chaotic property. Usu-
ally the logistic map is written as follows: f,:[—1,
fo.=ax(1—x), where a is the control parameter; f,, exists for
all  xeRL If ac[04] then f(0)=f(1)=0,
max[f,(x)]=f.(1/2)=a/4, and an action of the map f,
turns the interval [0,1] into itself. In this case the logistic
map can be written in the form:

F,. [0,1]—=]0,1],
F,=ax(1-x), ae[0,4].

We consider only this case. Depending on values of the pa-
rameter @ map (2) can have two different types of behavior:
regular and chaotic. The first type corresponds to such values
of the parameter a at which almost all (in the sense of the
Lebesgue measure) trajectories of the map F, converge to a
stable periodic orbit. The second type is determined by val-
ues of the parameter a at which behavior of the map F, is
chaotic. :

At the moment there are several different definitions of
the chaotic behavior of maps which apparently do not reduce
to each other. The abstract definition belongs to Vul et al.'®
However, we shall use a more appropriate (from our point of
view) definition (see also Takens>!) that is based on the con-
cepts of topological transitivity and sensitive dependence on
initial conditions (see Eckmann and Ruelle,® Devaney,23
Guckenheimer and Holmes,** and Wiggins®).

Let g be a map on an interval /.

(2)
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Definition. Iet J be a compact invariant set for the map
g:1—1. Then g is called chaotic if the following points hold:
{a) g has sensitive dependence on initial conditions on J;

(b} g is topologically transitive on J.

Following the theorems of Ognev®® and Misiurewicz?’ a
unimodal one-dimensional map with negative Schwarzian
derivative has chaotic behavior if a trajectory of its critical
point coincides with an unstable petiodic orbit of a finite
period, beginning with some finite step of iterations. There-
fore, if the point x,=1/2 of the logistic map (2} comes to an
unstable finite-periodic orbit {or an unstable fixed point) then
this map will be chaotic. Denote a set of values of the pa-
rameter a, corresponding to the chaotic behavior of F, by
A, . The Lebesgue measure of this set is positive, ;{4 .)>0
(Jakobson®),

Let us suppose now that a parametric perturbation with
period T acts on the map £, a €A, from iteration to itera-
tion, It means that in the set A, a map of transformations G:
A.—A . works. Then the map (2) can be written as follows:

F,: x—ax{l—x),

(3)

G: a—gla), aeA.

where a;,,=g(a;), ¢;%a;, i,j<T, i#j, and a,=g(ay).
Let us introduce the notations for the case T=2: g(a)=a,,
g(a))=gP(a)=a,. Then the following theorem holds.

Theorem. There cxists a set A, which consists of the
pairs a?, afe A, such that the map (3) with T=2, a,=a¥,
a,=a$ generates stable cycles of finite period,

The major meaning of this theorem consists of the fact
that certain periodic parametric perturbations of the chaotic
logistic map turn it from the family of the maps of the sec-
ond type into the family of the first one (see above}. It is
obvious that for the proof it is sufficient to find only one pair
a¥l, a§ of parameters a , a, from the set A, which obeys the
condition of the theorem.

Proof. Taking into account the above notations, the map
(3) will have the following explicit form:

x2n+l=fl(x2n ,a1)=a1x2,,(1 mx2n)1
ey _ (4)

Xowr2=FalXop1,82) = @sXa, (1= X241)-
Let us introduce the following functions:
®\(x,ay,a;)=f1(f), Pylx,a.a3)=Ff(f). It is not hard
to see that | generates the odd iterations, and &, generates
the even ones. That is why, determining the initial value x,
and the first iteration, x, = f,(x,}, the map (4) can be written
as follows:

X4 1= Py(xay,-y,ay,a2), (5a)
x2n+2=q)2(x2nsalsa2)- (Sb)

Each of the maps ®, and ¥, executes transformations inde-
pendently from each other for the given initial conditions x
and x,=f(x,). Thus the map (4) consists of the two con-
secutive iterations {5a) and (5b). Therefore any of the cycles
of period 27 of map (4} simultanecusly will be a “semi-
cycle” of period 7 of map (5a) and a “semicycle” of the
same period 7 of map (5b). Each of these latter semicycles of
period 7 will be the fixed points JE,!, i=1,2,...,7, of the map

d\™ and the fixed points %7, i=1,2,...,7, of the map &5, The
inverse statement, generally speaking, is not necessarily true:
not only the cycles of the period 7, but also the cycles-of the
periods k=17/j, j=2,3,..,7, where k is integer, are fixed
points of the maps ®{” and ®5”. But because the map with
chaotic behavior possesses only wistable cycles, the exist-
ence of the stable fixed points ¥} and )E,-z, i=12,..., of the
maps ®{” and P, respectively, means immediately that the
map {3) and consequently the map (4) has regular dynamics.

However, the stable fixed points %], £ can form not only
one, but several stable cycles. In this case the periodic be-
havior of map (4) will be provided by a stable cycle of one of
the periods k=2+/j, j=172,..,7, depending on the initial
value. In order to distinguish which points form one or an-
other stable cycle, for the chosen number rit is necessary to
consider for each i=1,2,...,7—1 the following relations of
polynomials:

[(D(]T)(x"l,al ,02) _x"l ]/[(I)(]“(xﬂl,a 1 ?a2)_‘%]]5

(6)

[(I’{zr)(fzﬂt 2a7) "-J?z]/[q’(z”(fz,al 1032) "-’22]-

Then the common points fr,-’, JE,E for all i=1,2,...,7—1 [this
corresponds to the minimal number of zeros of (6)] convert-
ing the relations (6) into zero, will make a cycle of period 27
in map (4). When the stable cycle is unique, then an arbitrary
number m>7 (where 7is semiperiod of this cycle, which is
multiple of /), the number of stable fixed points ¥} X7 of the
functions ™, B, is always 27, ie., i=7

Thus it is nccessary to find values a,=aleA,,
a,=a%eA,, at which the maps ®{" and ®}7, r<o, have
stable fixed points.

Let us consider maps (4) and (5) for the following pa-
rameter values: a,=3.678 573 36..., a,=3.974591 25... . It
is known (cf. Sharkovskii et al.°") that in the case a =a, the
critical point x,. of the quadratic map (2) comes into the
unstable fixed point after three iterations. At @=a, the point
x, comes into the unstable cycle of period two after four
iterations. Consequently a,A,, a,eA .. Now it is neces-
sary to solve the following equations:

=1 =1
¢(l‘r](x ’alya2)=x y

(7)

¢(27](x~21a1 =a2) =)22'

From direct calculations we can see that at 7=3 and the
chosen parameters a,a, each of the maps D and B has
three stable fixed points, respectively, ¥} and 7, i=1,2,3.
These points form the stable cycle of period 6 (see Fig. 1) in
map (4). Therefore the given values @, and a, compose one
of the pairs, @, =a", a,=a¥4, of the set A, and thus they
satisfy the condition of the theorem. )

It is necessary to note that the chosen values a,a, are
irrational. Consequently, any numerical investigation of the
functions ®{(%',a,,a,) and ©5(5%a,,a,) does not give
the rigorous results about the stable fixed points £ ,%7,
i=1,2,3. However, it is not easy to sec that these points
appear as a typical case: their stability does not break as a
result of small perturbations of the values @, and a, (see Fig.
2). Therefore, in the close vicinity of the chosen parameters
@,,a, (i.c., at the irrational ones as well) the result shown in
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FIG. 1. The stable cycle of period 6 in map (3) at @,=3.678 573 36,
a,=3.974 591 25 which is formcd by the following stable fixed points:
Fl=0.02322532... =0.301 779 44..., %1=0.500 679 08...,
%3=0.090 167 29... x2—0 837 480 58..., £2=0.993 645 H....

the Fig. 1 will be qualitatively the same: in map (3) at two-
periodic parametric perturbation the stabilization of chaotic

dynamics of the quadratic maps family takes place. |
Remark 1. The theorem can be extended if we consider
the case T>2. Then calculations of T values af, a,.., af

become much more complicated. Therefore the proof for ar-
bitrary T seems to be possible with the help of numerical
" investigations.

Remark 2 Wc have given the example of only one pair
of the values al, 4 from the set A, satisfying the condition
of the theorem. But in addition to the mentioned parameters
there are many other pairs, a‘f, ag, in A ; which also obey the
theorem. However, their location is a very difficult problem,
which nevertheless is solved easily numericaily.

Hypothesis. From the numerical investigations it follows
that apparently the set A, obeys the inequalities:
0<p (A} <u(A.).

The case is interesting when we have chosen as g, the
point of accumulation a., of the logistic map, a,=a.., and
we have taken as @, the value 4, a,=4. The value a,, does
not belong to the set A, because at @ =a., map (2} has no
chaotic dynamics. The behavior of this map is infinitely pe-
riodic. For @ =4 this map exhibits the most pronounced cha-

(&)
¢,

FIG. 2. One of the stable fixed points of the map &,
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FIG. 3. The stabic eycie of the period 4 of map (3) at @, =4, 4,=4.

otic properties. Nevertheless, map (4) with the given values
of parameters, a;=a,, and a;=4, possesses a stable cycle of
period four (Fig. 3).

Thus with periodic parametric perturbation of the logis-
tic map having chaotic behavior, parametric suppression of
deterministic chaos takes place.

Ill. SUPPRESSION OF DETERMINISTIC CHAOS BY
MEANS OF DETERMINISTIC CHAOS: IS IT
POSSIBLE?

Up to the present we have investigated a problem con-
cerning chaos suppression by means of an external periodic
parametric action on the systems with chaotic dynamics.
Here we shall look at a similar problem but with another
position: Is there a possibility of suppressing chaos (in the
rigorous sense) in a dynamical system by perturbing it with
the action of another system also with chaotic dynamics? k
is clear that this task as formulated is in a certain sense
incredible and might be imagined intuitively impossible.
Nevertheless, we can prove with the example of the same
logistic map with chaotic dynamics that such a phenomenon
is really possible. In fact it follows immediately from the
statement of the theorem of Sec. 1L

It should be noted that deep mathematical research
(Blank30) and some numerlcal mvestlgatmns (see, for ex-
ample, Matsumoto and Tsuda,®' Matsumoto,”> Anishchenko
and Safonova,® and Herzel34) concerned with regularization
of chaotic dynamics by means of certain stochastic perturba-
tions have been done. In contrast to these papers the major
meaning of our considerations consists of the following: if
there are two mappings with chaotic behavior which are dif-
ferent from each other by a value of parameters, then their
composition does not necessarily possess chaotic dynamics.
Namely, let f; be the logistic map F, with one of several
possible values of the parameter a=a, €A, and let f; be
the same map, but with another value of the paramecter
a=ared,, ie, filalx)=dix(1-x) and fy(a}.x)
=abx(1—x), a\#a5, a}, aheA,,i=12,.. . Thus f, and f,
have chaotic dynamics. In this case the statement of the theo-
rem of Sec. II leads to the following.
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Corollary. The maps g,=f°f, and g,=f°f, for cer-
tain values of parameters @} =a{’, ab=a¥, a{', af A,
have stable periodic points.

Proof. The composition fiof,=g, is the map &,
g,=®,, and the function g,=f,°f, is the map ®,, g,=P,,
which were described above. Therefore, all arguments con-
cerning ¥, and &, should be repeated for g, and g,. Further
(see above), for @ =3.678 573 36... the map f, is chaotic and
for a,=3.974 591 25... the map f, is chaotic. However, the
functions <&,d, and consequently the maps g;,g, at the
given values a,,a, have stable period three points. |

Remark. This corollary {(as well as the theorem) may be
extended for an arbitrary number of mappings f,,f2,...fu>
fi=alx(1—-x),aleA,,i#},i,j=1,2,...n. In this case the
statement will be concerned with the compositions
gl=fl°f2°"'°fna g2=fu°fl°f2°“.Ofn—lﬂ'“!
gn=f2°f3°' ' -of"ofl .

Thus if a chaotic map acts on another chaotic map, then
at certain conditions this interaction leads to a mutual chaos
suppression.

IV. DISCUSSION

We have shown that chaos can be suppressed in the lo-
gistic map. Therefore, for systems in which the transition to
chaotic dynamics happens through period doubling bifurca-
tions and is described effectively by the logistic map, the
phenomenon of parametric suppression of deterministic
chaos can take place, Some time carlier we investigated the
transition to chaos for the example of a circle map
(Loskutov,™ and Loskutov and Rybalko®®). It was shown nu-
merically that in this case the parametric suppression of
chaos is observed as well. On the other hand, from the cor-
ollary it follows that certain interaction of systems with cha-
otic behavior can regularize their dynamics.

One can use these two phenomena for processing (send-
ing, reading, and recording) latent information and for an
explanation of certain brain behavior as an information pro-
cessing system (Loskutov and Tereshko®™). It should be
noted that the idea of sending secure signals has been
achieved theoretically and experimentaily (Pecora and
Caroll,** and Gullicksen et al.*"). Here some another ap-
proach is proposed.

So, assume that we have a chaotic dynamical system.
Suppose that the chaotic behavior of this system is provided

by a chaotic attractor which appears through period doubling -

bifurcations. When chaos takes place, all orbits with periods
2"T, n=0,1,..., are unstable. Let every periodic orbit corre-
spond to some “word” the length of which is equal to the
period. For example, the words {A}, {AB}, {ABCD},
{ABCDEFGHT},... should be associated with the orbits of
periods T, 2T, 47T, 8T,..., respectively (it can be done a
certain way). Since periodic orbits are unstable then all in-
formation (words) encoded in them will be hidden. Now, if
we perturb parametrically such a system then at certain con-
ditions we may stabilize certain orbits and thus extract the
hidden information. Moreover, if this system will be coupled
with another similar system, then in this way one can con-
struct new models of ciphering and deciphering information
and some device of the codal-lock type (Loskutov and

Tereshko”™). In contrast to traditional ways of extracting
information, in the given case the necessary condition is the
following: the key for ciphering and deciphering must be
dynamical. Besides, the described method ensures the easy
transitions of the system between stabilized orbits, since the

values ¢, a§'~', i=2,3,..., may be very close.

Finally, although we have considered chaos suppression
on the basis of localized systems only, in distributed systems
which can be approximated by a two-dimensional lattice of
coupled one-dimensional maps, chaos can be suppressed as
well. Now we have preliminary numerical results (Loskutov
and Thomas*').
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