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PARAMETRIC PERTURBATIONS AND DYNAMIC SYSTEM CONTROL

A. Yu. Loskutov, A. K. Prokhorov, S. D. Rybalko, and Yu. S. Fomina

The article analyzes dynamical systems with externally applied periodic perturbations in a general setting.
We provide a rigorous justification of an approach that reduces such systems to autonomous systems
and thus simplifies the analysis. The behavior of families of quadratic one-dimensional maps and circle
maps in the presence of parametric perturbations is studied in detail. We prove the existence of periodic
perturbations acting strictly on a chaotic subset that stabilize the dynamics and induce the emergence of
stable cycles in initially chaotic maps. The analytical results are supplemented with numerical data. It is
shown that chaos may be suppressed by a sufficiently complex periodic perturbation.

1. Introduction

Dynamical systems with chaotic behavior are a subject of intensive studies. This is primarily attributable to
the fact that chaos is a fairly general property of diverse nonlinear processes observed in many natural sciences —
from biology to chemical kinetics. The reason for chaotic behavior is not the complexity of the dynamical systems,
but rather the action of external perturbations. Moreover, chaotic behavior is not necessarily observed in complex
systems with an arbitrarily large number of interacting particles, while chaotic oscillations may develop in very
simple systems with as few as one and a half degrees of freedom. The appearance of chaos is associated with
purely internal features of the dynamical system, when its trajectories become exponentially unstable for certain
parameter values.

This has led to the emergence of a new line of research in deterministic chaos theory focusing on control of
chaotic systems and suppression of chaos (or stabilization of chaotic behavior). This line of research is related
to many branches of physics and mathematics: alongside the main issues of control and predictability, the chaos
suppression problem touches on a whole range of important applications such as information processing (i.e.,
recording, encoding, decoding, and hidden transmission of useful messages; see, e.g., [1-3]), self-organization
[4, 5], stabilization of unordered contractions of the cardiac muscle and defibrillation [6—9], artificial creation of
coherent structures in distributed systems with spatial-temporal chaos [10] and their approximation by interlinked
map lattices [11], and others. Our ability to solve even a part of these problems would substantially improve the
understanding of processes and regularities underlying the behavior of diverse nonlinear dynamical systems and
significantly advance the development of nonlinear oscillation theory for both lumped and distributed systems.

By stabilizationof instability or chaotic behavior of dynamical systems we usually understand artificial cre-
ation of stable (as a rule periodic) oscillations in the system by application of external multiplicative or additive
perturbations. In other words, stabilization requires finding external perturbations that move the system from a
chaotic to a regular regime. Despite this attractively simple wording, the problem is quite difficult to solve for a
whole range of dynamical systems. Moreover, the solution of the stabilization problem is still far from completion,
although an impressive number of publications deal with this topic (see, e.g., [12—14] and the lists of references in
[15, 16]).

The chaotic behavior of dynamical systems can be stabilized in two different ways. The first approach moves
the system from chaotic to regular regime by applying external perturbations without feedback. In other words, this
approach ignores the current state of the dynamical system variables. A qualitatively different approach applies a
correcting perturbation allowing for the target value of the dynamical variables and therefore involves feedback as
an integral component of the dynamical system. According to established terminology, the first approach to chaotic
dynamics stabilization is callechaos suppressioar feedback-less chaos controthile the second approach is
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calledfeedback chaos contr¢br controlling chaos). Either method can be implemented using parametric or force
techniques.

The first parametric method of chaos suppression (without feedback) is apparently described in [17]. It has
been subsequently substantiated for specific examples of a certain class of dynamical systems [18]. Multiplicative
perturbations have been assumed to remain always inside the region of chaotic behavior. Subsequently similar
approaches have been described by many authors (see, e.g., [12, 19-21] and the references therein). A sufficiently
general feedback-less force control method for chaotic systems has been proposed by Huebler's group [22]. Other
methods for stabilization of chaotic dynamics have been considered in [13, 14, 23]. Interesting general rules
for chaotic behavior stabilization by force control of dynamical systems have been described in [24], where it is
assumed that the threshold of chaos suppression by an additive perturbation is related with system entropy by a
scaling relationship.

Feedback methods have become very popular after the publication of the Maryland group study [25, 26],
where it is shown that sufficiently weak parametric perturbations can be applied to stabilize virtually any saddle-
point limiting cycle enclosed in a chaotic attractor. By correcting the parameters in accordance with the value of
the dynamical variables, we can force the system to function on a preselected limiting cycle. The publication of
[25] has stimulated both experimental and numerical studies of chaotic behavior stabilization (see the references in
[15, 16]) and has attracted increased attention to controlling unstable systems.

The present article examines the effect of small periodic perturbations on one-dimensional maps. The article
is organized as follows. First the general propositions are proved (Sec. 2); then we consider in detail the family of
maps

T+l = al‘n(l - In)v (1)

wherea € (0; 4] and z,, € (0; 1), and
Tpntl = a+ xpn + bsinz,, mod 27, (2)

wherea > 0 and b > 1. The behavior of these systems is studied in detail in the presence of parametric
perturbations of period 2. The bifurcation diagrams obtained in the presence of this perturbation illustrate the
harmony of chaos and order and are comparable in their beauty to some fractal sets generated by iteration of
complex functions.

2. Methods of Analysis of Perturbed Maps

In this section we describe some general properties of maps in the presence of parametric perturbation. Assume
that the map describing the behavior of some process has the form

T,: x— f(x, a), (3)

wherex € M C R", a is a parameter from the set of admissible values- R, x = {z1, x9, ..., z,,}, and

t={f, fo. .., fu}:
We define a parametric perturbation as a transformation that determines the valua efich time instant,
G : A — A. Then the map (3) is representable in the form

x — f(x, a),
T,: { (4)
a— g(a).
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A perturbation is callegheriodicof period 7 (or 7-periodic) if the functiong(a) is defined only atr points
ai, az, ..., ar inthe following way: a;11 = g(a;), i = 1, ..., 7 — 1, and a; = g(a,). In other words, the
perturbation is defined by parameters that are sequentially “switched” in map (3). The set of perturbations of
period 7 can be placed in correspondence to the set

A—{86A®A®...®A:6—(a1,a2,...,aT), a; #a;, 1 <i,j<71,i#j, al,ag,...,aTeA},

T

A CR".
The introduction of ar-cyclic perturbation for the map (3) implies that the resulting system (4) can be writ-
ten as

To,: x+— f(x, a1) =1,
Tu,: x— f(x, a2) =,

T = (5)

We introducer functions of the following form:

F1 = fT(fT—l(' .. fg(fl(X)) .. )),
F; = fl (fT(fol(' . f3(f2(X)) e )))a

.................................. (6)
Fr=f_1(f_ (.. f(f(x)...),
wherex = {z1, =9, ..., z,} and
fi = {fi(1)7 fi(Q)a e fi(n)}y F;, = {Fi(l), Fi(Q), e Fl-(n)}, i=1,2,...,7,
are n-component functions. Then the perturbed map (4) obviously can be rewritten as
T, : x+— Fi(x, a1, ag, ..., ar),
Ty: x— Fa(x, a1, ag, ...,a;),
................................ (7)
T:: x+— F.(x, a1, az, ..., ar)
with the initial conditionsx; = f1(xq), x2 = f2(x1), ..., X;—1 = fr_1(X;—2).

Two important propositions are easily proved for these maps.

Lemma 1 [27, 28]. If the map Ty, 1 < k < 7, has a cycle of period and the functionsf;(x) are
continuous, then the map,, p =k +1 (modr), has a cycle of the same periad
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Moreover:
(a) if the cycle of the magj, is stable, then the cycle of the mdp is also stable;

(b) if £, is a homeomorphism, then the mé&ps and 7}, are topologically equivalent.

Proof. Assume thatfy(x), 1 <k < 7,isa CP-function and T}, has a cycle of period. This means that
there exists a poink such thatF% (x) = X, FJ(X) # X, 1 < j < t. Consider an expression that follows directly
from the definition of Fy:

£, (Fr(x)) = Fp(fi(x)), p=Fk+1(modr). (8)

Then it is easy to obtain thefy,(F}.) = F} (f;) and therefore for the poink andn =t we haveF;(fk(SE)) =
£, (Fi.(x)) = £,(x). Moreover, for1 < j < t we have the inequalityf, (f;,(x)) # fi(X), because iff} (£ (X)) =
f,(X), then F), (£,(X)) = £i (F4(X)) = fx(X). However, since the function, i = 1, 2, ..., 7, are single-valued,
we can write

fo 1 (Ba(. - £ (FL(X)))) = fo1 (Fral- - £1(%)))

(see (6)), i.e.;F{;“(SE) = F(x). But this contradicts our assumption. In other words the phi(%) is ¢-periodic
for the mapT,,.

If the point x is a stable periodic point of the mdp, then there exists a neighborhodd > x such that
for every pointx € U we have lim F}*(x) = X. Since the functiond, are continuous, this implies that

lim f,(F}"(x)) = lim F.*(fy(x)) = fi(X). In other words, all the points from the neighborhofidU) are
attracted to the poinfi(x) under the action of the ma,.
Topological equivalence follows immediately from (8) and the definition. Q.E.D.

The main point of this proposition is that we can essentially simplify the analysis of maps with periodic
perturbations. Instead of the original nonautonomous map (4) it suffices to consider one of the autonomous maps
T1, Ts, ..., T defined by (6), (7). The entire dynamics of the original map (4) is thus defined by the set of
maps (7), which act independently of each other and are only related by the initial conditions.

Constructions (5)—(7) directly lead to another interesting result.

Lemma 2 [18, 27]. The periodt of every cycle of the perturbed map (4) is a multiple of the perturbation
period 7: t = Tk where k is a positive integer.

Note that we did not impose any conditions on the detluring the construction of the mag§, 7», ..., T
or in our proof. All the results therefore remain valid for any gebf admissible values of the parameterof the
dynamical system (3) with a-periodic perturbation.

Introduce the subsel, C A of the set of parameter values such thauife A., then the map (3) has
chaotic behavior. It has been shown analytically (see, e.g., [18, 27, 29, 30]) thatfot and ; = 2 periodic
perturbations may suppress chaos and stabilize certain cycles of these maps. In other words, it has been shown
that for some one-dimensional and two-dimensional chaotic maps there exist perturlbatiofs,, as, ..., ar)
such that for somé& € A, (or g(a) € A.; see (4)) the perturbed map (4) is regular with a stable cycle of period
t = 7k. This result has been proved for a wide class of maps [27, 29, 30]. The emergence of periodic dynamics
as a consequence of external perturbations under fairly general conditions on the form of the family of maps is
apparently a typical phenomenon.
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Below we consider only one-dimensional maps={ 1). For such maps we can generalize the theory devel-
oped in [27, 29, 30] and efficiently apply the method to find perturbations that stabilized prespecified cycles in
applications. The implementation of this method relies on the following formal result.

Theorem 1. Assume that the mapg, : © — f(z, a), x € M, a € A, satisfy the following properties:

(i) there exists a subset C M such that for all x1, xo € o there exists a valuet* € A for which
f(z1, a*) = m;

(i) there exists a critical pointz, € o such that

of(x, a)

T |, e o=t
foreverya € A.
Then for everyxy, 3, ..., z; € o there existz; and ay, aq, ..., a; such that the cycléx;, zo, ..., z;)
is a stable cycle of the perturbed map, for a = (ay, aq, ..., a;).
Proof. Take arbitraryzy, z2, ..., z,. By condition (i), the system of equations for the parameters
az, ..., Qr
f(x1, a1) = 22,
f(x2, a2) = x3,
)
f(xTv (17—) =T
has a solution of the forna = (a4, aq, ..., a;). This means that the sequence of valdes, zs, ..., ;) =p
is a cycle of periodr of the mapT, in the presence of the periodic perturbatian= (a1, as, ..., a;). To

stabilize this cyclep, it suffices to make the element; close to the critical valuer., because the multiplier

-
B(p) = [[ Dg f(zi, a;) and Dy f(z., a) = 0 for all a. This guarantees the stability conditidd(p)| < 1.
QED.

Families of polymodal maps obviously satisfy conditions (i), (i) . Since every cycle of the farm z,,
xs3, ..., xr) is stable for arbitraryz; € o, our assertion makes it possible to apply the proposed method for
controlling the dynamics of systems that are effectively described by such families.

In a real system, the parameters experience small perturbations from the external environment. Let us examine
the robustness of the proposed method under such perturbations. To this end, we will estimate the admissible
distortions of the parameter valuds,, as, ..., a;) and the cycle elementéry, zo, ..., ). Assume that a
perturbation(a;, a9, ..., a,;) corresponds to the stable cycle., =2, x3, ..., z.). Now suppose that the
valuesa; change slightly,

(a}, af, ..., al) = (a1 + Aay, as + Aay, ..., ar + Aa;),

where|Aa;| < §,. Letus find the maximum admissiblg when the perturbed cycle remains stable and investigate
how the cycle is distorted, i.e., findxz; for

(2}, 2, .., 2L) = (2 + Ay, 290 + Ama, ..oy T + Axy).

The results of these computations lead to the following exact bound.
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Theorem 2. Let f(z, a) € C?*[M x A] and the perturbed mafT, for @ = (a1, as, ..., a,;) has a stable
cycle of periodr, p = (z1, z2, ..., ;). Under these assumptions, if
1
|Aal| S 5a = )

7S, LS; 1S St
=1

wherei = 1,2, ..., 7, S, = max|D, f(z, a)|, L = max|D2 f(z, a)|, S; = max|D, f(z, a)|, then this
z,a x,a z,a

map also has a stable cycle = (x. + Az, 29 + Azo, ..., x; + Az;) of period 7 for @’ = (a; + Aay,
as + Aay, ..., a; + Aa,), and |Ax;| < 6, = 1/LSTL.

Proof. Assume that all; are perturbedqa, = a; + Aq;. Find the incrementAz; = 2} —z.. Here 2 should
be a fixed point of the mafiy (see (7)), i.e.x| = Fi(x}, d}, d), ..., a.). Then

e+ Axy = Fl(l'Ca ay, az, . . ~7a7') + D, Fl(zvc,a)Aml + ZDaiF1($Ca a)Aaz
=1

Hence, using the relationships. = Fi(z., a) and D, Fi(z., a) = 5(p) = 0, we find that

A(L‘l = Z H DQc f(xl, al)Da f(l'l, ai)Aai.

=1 l=i+1
Thus,
’AJZ1| < 5(12 H |Dx f(xh al)HDa f(xzu az)‘ < 6aTSaZS§;- (10)
i=1 I=i+1 =1

Let us estimate the resulting change in the cycle multiplier:

B = Bp) =Bp) = []Da f(a}, a))
=1

T

= 3" D% f(ai,a) [[ Daflr, a)Az;
i=1

1=1, i

T

+ ZDZE f(‘,r’bv ai) H DI f(xh CLZ)ACLZ'.
i=1

I=1, I

In both sums, only the first terms do not vanish, becaldsef (z1, a1) = D, f(z¢, a1) = 0. Therefore,

T

B(p') = [DF f (e, a)Azy + DZ, f(ze, a1)Aar] [[ Da f (@1, @),
1=2
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However, D2, f (., a1) = Dq (Dy f(2c, a))] =D, (0) = 0. We thus obtain

a=ay

1B())| = |Az1||D3 f(ze, ar)| [ [|Daf (i, ar)]-

=2

Stability of the cycle necessitates the inequality

|Az1||D2 f(2e, ar)| [[|Da f(a1, ar)] < |Az|LST < 1.
=2

Hence we obtainAz;| < §, = 1/(LST ).

Thus, if the perturbatiomz; is less thand,, then the cycle remains stable. But the maximum admissible
changeAx; when the parameters are perturbeddyis given by inequality (10). Therefore the condition 6
may be written as$, 7S, > i, St = 1/(LSI™!) or

1
7S, LS;1 S St

=1

0g =

Q.E.D.

3. The Family of Quadratic Maps

Let us now consider the familiar family of quadratic maps. A particular case is the so-ogjistic map, i.e.,
the map7, of the interval|0, 1] into itself:

Ty: x— @(a, z) = ax(l — x). (11)

The family (11) models various physical phenomena (see, e.g., [31-33]). It is well known thatfdp, a),
as = 3.569..., this map has regular dynamics: a stable cycle of peticd 2. However, fora € (as, 4],
the map7, may display both regular and chaotic behavior. It is known [34, 35] that thelsetorresponding to
chaotic behavior of the map (11) is of positive Lebesgue measure and thexpeidtis a density point of this set.

Consider the parametrically perturbed map (11). If the perturbation periedtigen it can be written in the
form

Tp41 = anxn(l - SUn)’ an = Gpmod T+1- (12)

It has been previously shown [18, 27, 30] that the perturbatibes (a;, as, ..., a;) acting only on the chaotic
set A. may stabilize its dynamics. In other words, we have the following exact result.

Theorem 3 [18]. There exists a subsed; C A, of the set of all perturbations acting od. such that if
a € Ay, then the perturbed map (12) has a stable cycle.

The set of all perturbation®\; leading to regular dynamics has been investigated in more detail in [5]. It
has been shown that the parameter values corresponding to stable cycles have a neighborhood at least of order
~ 107%a. Moreover, it has been established by numerical analysis that there are no cycles oftperibébr the
period-2 perturbation- = 2 in the region[3.8, 4.0] . This is a particular case of the results presented below.
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The family of maps (11) clearly satisfied the conditions of Theorem 1. For the given map theisahe
interval [z, x|, wherez, and z. are the solutions of the equation,; = f(z, 4), xin # 0 is the intersection
point of the curvey = 4x(1 — x) and the straight line) = x. Thus, [z, z.] = [1/4, 3/4].

Now consider a more general case, without making the assumptions of Theorem 1. In other words, we will find

the perturbations: = (a1, as, ..., a;) when the map (12) has a stable cycle of some period, which is a multiple
of the perturbation period (see Lemma 2). We first assume that the perturbed map has a cycle of period equal to
the perturbation period = 7, i.e., p = (1, x2, ..., 2¢). Then the points forming this cycle obey the following

system of equations:
ry = arry (1 — x1),

x3 = agra(l — z2), (13)

1 = apxe(1 — x4).

To solve the inverse problem, i.e., find the parameter values when the map (12) has a givep eycle

(z1, x2, ..., x¢), we have to express the values from system (13):
x2 x3 1
g =——, = ——-, cey, Q= ————. 14
x1(1 — 1) xo(1 — x2) t xi (1 — xy) (14)

Thesea; are not necessarily contained in the intery@l 4] for all possiblez; € (0, 1). However, if this is so,
then for every cyclep = (z1, x2, ..., ;) we can find parameter valuds,, as, ..., a;) that correspond to the

t
existence of such a cycle in the map (12). In this case, if the multiptiép)| = | [] ai(1 — 2z;)| < 1, then the

cycle is stable. Using Eq. (14), we thus obtain the condition

<1. (15)

If the critical point z. = 1/2 is one of the cycle points, thefl — 2z.)/(1 — z.) = 0. In this case, inequality (15)
always holds.

The set of value® = (x1, z2, ..., z;) forwhich a; € (0, 4] and inequality (15) holds forms a certain region
in the coordinate spack’. Each point in this region corresponds to a stable cycle of the perturbed map. Using the
system of equations (14), we can construct the corresponding region in the parameteR’space

As an example, consider a perturbation of periog= 2. By Lemma 2, the cycle of the perturbed map (12)
may only have the period = 2k for some integerk > 1. Let us investigate the existence domain of such stable
cycles in the coordinate and parameter spaceg&ferl1, 2, 3.

I. k= 1. Then the perturbation period = 2 is equal to the stable-cycle peridd= = = 2. Itis easy to see
that in the spacézx;, x2) its existence domain is defined by the following system of inequalities:

1—-2211— 22
1—1‘1 1—1:2

0< —2 <4, 0<—"1 <4, ‘

1‘1(1 — ZL‘1) - :Ug(l — fL‘Q) <l (16)

The solution of the first and second inequalities corresponds to the set of all admissible values of period 2. The third
inequality identifies in this set the existence domain of stable cycles. Fake (0, 1). Then solving system (16)
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Lo
1

0.51

T

Fig. 1. Existence domain of stable cycles of period 2 for a perturbed ) quadratic map defined by the curves = 41 (1 — z)
(@), z1 = 4z2(1 — z2) (b), z2 = (3z1 — 2)/(5xz1 — 3) (C), 2 = z1/(3z1 — 1) (d) in the space(z1, x2) and the curves
az =1/a1 (€), a2z = 8/[a1(4 — a1)] (f), a1 = 8/[a2(4 — a2)] (g) in the parameter spade, az).

for x5, we obtain

31’1—2 1 I 1 3
0<z9 < , 0<z <=, 0<zy < ——\ S<a <2,
T2 e 3 =3 2S5 1 3575y
3r1 — 2 T 3
<Xy < — <<l
5oy —3 2 35— 1 5 01

This result is presented in Fig. 1a.

To construct the corresponding region in the parameter spaceuns), we need to transform the region in
Fig. 1a by relationships (14). Performing this operation, we partition the region in Fig. 1a into subregions, which are
mapped one-to-one onto the plafe, az) (they are marked by different hatchings). It now remains to transform
the boundaries of these subregions. We thus obtain the existence domain of stable cycles of periqd 2, z2),
in the parameter spade, a2) (Fig. 1b).

It is now easy to analyze the perturbed quadratic map.

(i) Since the region in Fig. 1b has intersecting subregions, the map defined by system of equations (13) is
single-valued but not one-to-one.

(i) The presence of intersection subregions indicates that the perturbed map lfi2aide for certain pa-
rameter values it may simultaneously have two stable cycles of period 2.

(iii) The parameter region [3.8, 4.0] does not intersect with the region of parameter values corresponding to
cycles of period 2 (Fig. 1b). This explains why no cycles of period 2 were found in [18] (see above).

Il. k& = 2. In this case, the stable cycle is of period 4, ie.= (z1, x2, z3, x4), and the perturbation is
defined by two parameter@:,, as), as previously. Let us determine the parameter vatueand a; when these
cycles exist and are stable.
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From (13),
o = alxl(l — .%'1),
r3 = agz2(1l — 22),
17)
x4 = arxs(l — x3),
] = a2x4(1 — 1}4).
This gives
o — 2 _ T
! ml(l—xl) l‘g(l—.fg)’
(18)
I3 T
CL2 = =

xo(1 —mx2)  xg(l —xy)

It is easy to see that not every set of values, x2, z3, x4) corresponds to a perturbed-map cycle. Taking two
relationships in (18) as independent, we can analytically express the other two. In the same way we find the
parametersy; and as in terms of two independent values. Take and x3 as independent values. Then, setting

g1 = z1(1 — 1), g3 = x3(1 — x3), we obtain the system of equations

x T
—2:@, 17x2:(17x4)3—qg.
Ty q3 T1q1

Hence we easily express, and z» interms ofz; and x3:

2 2
_X14143 — X343 Ly — r197 — T3493q1
- 2 2 ) - 2 2
r1qy — X343 r1qy — *3q3

We can also express; and as interms ofx; and xs:

_ Z141 — 343 _ 1
ag=—5—3, ag = ——F———. (19)
197 — X343 a1g3(1 — a1g3)

Relationship (19) may be applied to construct the existence domain of a stable cycle of period 4 in the parameter
space(ai, az). Indeed, choosing arbitrary;, x3, we find a1, as and also compute:,, x4. In what follows we
only take x; and x3 that satisfy the following relationships:

0<a <4, 0 <ag <4,
(20)

1 —=2211 2291 — 2231 — 224
- 1—LU1 1—.%2 1—:133 1—LU4

B(p)

Figure 2 shows the region defined in the spdeg, a2) by conditions (20) combined with (19). We see the
intersection regions of the separate “branches” that correspond to the bistable behavior of the perturbed map. Note
the similarity of these “branches” (see Fig. 2 and Fig. 1b), i.e., there exist scaling transformations that take the
region of Fig. 1b into a subregion in Fig. 2. Such scale invariance also holds#o8.
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)

Fig. 2. Existence domain of stable cycles of period 4 for a perturbed @) quadratic map.

lll. &k = 3. Here the stable cycle of the perturbed map (12) is of period 6i.e.,(x1, z2, 3, T4, T5, x¢).
Since the perturbation is defined by two parameters a2), as before, the points of the cycfe should satisfy
the following relationships:

xT9 Ty Te
a1 = = = R
! $1(1—l’1) 1’3(1 —1‘3) :L‘5(1—$5)
(21)
T3 5 !
a2 — = =

:L‘2(1 — 1'2) l’4(1 - 1‘4) 5136(1 - I'G) ‘

There are four expressions linking the values of the coordinéteszq, x3, x4, x5, x) Of the cycle p.
Taking two as independent, we can obtain the other two and use them to express the paranmeatdrg,. Unlike
the casek = 2, this procedure cannot be completed analytically.

Let us briefly consider what can be obtained from relationships (21). First, dsfoe, we takez; and x3
as the independent coordinates. Then, applying the same transformations as in the previous case, we obtain

T3q3 — T5q1  T1G1 — T3G5 29
2.2 2 (22)
343 — Trqq 1497 — T3q5

ayp =

where, as beforey; = z;(1 — z;). Equation (22) is simply a relationship among, z3, =5. Using (21), we obtain
Ax3 — Bx3 + Ca} — Da? 4+ Exs — F =0, (23)

where

A=q, B =2q + x3q3, C =q + ¢ + 2w3q3,

D = x3¢3 + x3¢3 + ¢, E = 2343, F=21q193(q3 — q1)-
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a a
41 - 41

Fig. 3. Existence domain of stable cycles of period 6 for a perturbed @) quadratic map: for the parameter intenjal 4] (a) and a
more detailed picture for the regioi3, 4] (b).

Now find x5 = f(x1, 3) from Eq. (23) and use (21) and (22) to obtain all the remaining cycle parameters:
ay, a2, 2, x4, r6. Choosing among all the resulting cycles only those for whiche (0, 1), i = 1, 2, ..., 6,
ai, az € (0, 4], and |3(p)| < 1, we construct the existence domain of a stable cycle of period 6 for the perturbed
map (12) in the parameter space;, a2). These results are presented in Fig. 3. We see from the figure that
the subregions have the same typical structure as in Fig. 1b. Moreover, the existence domains of stable cycles of
periods 4 and 6 in the presence of perturbations of period 2 intersect with the chaotic behavior region [3.8, 4.0].
This property substantiates the numerical results of [5], where stable cycles of periods 4 and 6 have been observed
in the presence of perturbations of period 2.

Let us now proceed with a numerical analysis of the perturbed map (12) and construct the bifurcation diagram
in the parameter spade:;, a2). The general form of such a diagram is shown in Fig. 4. We clearly distinguish the
regions of periods = 7, 27, 37 that have been obtained analytically in Figs. 1-3.

Figure 5 presents a more detailed part of the bifurcation diagrams in the parameter [&giot]. The
previously noted scale invariance is clearly seen. The simply connected regions corresponding to stable cycles of
specified periods have the typical “swallow tail” shape, with self-intersecting “tails”. A detailed analysis of the
entire diagram shows that a similar picture is observed when the scale is increased further.

4. The Family of Circle Maps

Let us now consider the standard sine map of a circle, which effectively describes the transition from quasiperi-
odic motion to chaos in nonlinear systems [36, 37]:

Top: x—@(a, b, x)=a+z+bsinz (mod2m), (24)

wherea and b are the control parameters. Circle maps arise in many problems in physics, chemistry, and biology;
for instance, the periodically excited Josephson junction [38], some problems of chemical kinetics [39], unordered
contractions of the cardiac muscle [6-9], and others [40, 41].

For b < 1 the functiony is monotone increasing of0; 27) (and therefore one-to-one). The dynamics of
the map (24) is therefore determined by the rotation number, which may be defined as

.1 ™ (x0) — 20
p=lim ———F———
n—oo 27 n
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3.5 A 5 .o
3.5 o 4

Fig. 4. Bifurcation diagram of map (12).

o a0 4

Fig. 5. Bifurcation diagram of map (12) for parameter valueg3rb, 4].

where o™ () = poyo...op(z) is the nth iteration of the map. Depending on the rotation numpes—

whether rational or irration%l — the circle map (24) displays periodic or quasiperiodic dynamics, respectively. For
b > 1 , the functiony is no longer a diffeomorphism, and the map (24) is not one-to-one. In this case, given
certain relationships between the parameterand b, the map (24) does not have stable periodic trajectories.
Instead, it displays chaotic behavior and is characterized by a positive Lyapunov exponent [42, 43].

Take b = const > 1 and choose: as the perturbation parameter. Then the perturbed map may be written in
the form

Tptl = Gp + Tp + bsinz,, (mod 2m),
(25)

Gn+1 = Apmod T
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where 7 is the perturbation period. Consider the case= 2. Let us find the conditions when the perturbed

map (25) has a stable cycle whose period is equal to the perturbation period #.e.,= 2. We will investigate

the existence regions of these stable cycles in both the coordinate space and the parameter space. As for a quadratic
map, we solve the inverse problem. Assume that the paintsind z, form a cycle of period 2p = (z1, x2).

Then they obey the following system of equations:

T9 = aj + x1 + bsinxy £ 27k,
(26)

r1 = as + xo + bsinxo £ 2mm,

where k, m are integersk =0,1,2,..., m =0, 1, 2, .... These integers are introduced to allow for the fact
that the image point may complete several turns around the circle during one iteration. System (26) is used as a
condition to find the parameters and a;. We also need to write the stability condition for the cyple= (21, x2):

(14 bcoszy) (1 +beosza)| < 1. (27)

Note that equality (27) is independent of the parametgrsaand a9, and also of the valueg and m. Itis
therefore sufficient to construct the existence region of stable cyctesx;, x2) in the coordinate spacer;, z2)
using condition (27), and then apply Egs. (26) to transform it into the corresponding region in the parameter space
(a1, ag) forvarious k and m.

We will consider the simplest case, whén= m = 0. To justify this choice, it suffices to note that a region
constructed in the parameter space yields all other regions for éttzard m by +2x N horizontal and vertical
translations{V =0, 1, 2, ...).

Given these remarks, we rewrite system (26) in the form

To = a1 + x1 + bsinzq,
(28)

r1 = ag + xo + bsin g,

If condition (27) is satisfied for the pointge;, x2), then the cyclep = (z1, x2) is stable. Inequality (27) splits
into the following set of inequalities:

- bcosxq - 2+ bcoszy 52 b0
coS T _— CoS T _— coS T
2 b2cosxzy + b’ 2 b2cosxy + b’ ! ’
(29)
bcosx 2+ bcoszy
> < - 2 b<0.
cos T2 b2cosxy + b cos L2 b2cosxy + b cosy +

To obtain an explicit dependence of on x1, we need to take arccos of the left- and right-hand sides of each
inequality, which have the form cos zo < F (b, x1) Or cosxa > F (b, 1), where F' (b, z1) is a function. We
should bear in mind thadrccos of the right-hand side exists if

|F (b, x1)| < 1.
Further analytical investigation of system (29) has shown the existence of two critical values of the pabameter

bcl - \/5, bCQ = 2.

The shape of the region is qualitatively different on two sides of these critical values.
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Let us consider in more detail the case whea (1, b.1) = (1, v/2). Solving system (29) for:» as a function
of z; and noting thatr, 25 € (0; 27), we obtain

Fb x)<zy<2m—F(b,x;) for 0<z; <A and 2r — A <z < 2,
(30)
0<zo <2 for A<z <21 — A,

where

1
A = e
arccos< b+1>’

bcos 1
F(b, .’El) = arccos <_b2(josxl<i»b> .

System (30) defines the existence region of stable cycles of peripe=2x1, x2), for the perturbed map (25)
with b € (1; be1).
This result is shown in Fig. 6a. Fdr; < b < b.o and b > b9, the expressions describing the relevant region
are fairly complex and are therefore omitted. Figures 6b and 6c show the region constructed in the coordinate space
(z1, x2) for various values of the parametéer
To solve the inverse problem, i.e., find the perturbations of the pararetefa;, az) for which the map (25)
has the specified cyclg = (x1, z2), we need to express; from system (26) as

a1 =9 —x1 — bsinzy,
(31)

a9 = 1 — T9 — bsinxy.

Under relationships (31) the regions in Figs. 6a—6c¢ transform into corresponding regions in the parameter
space (a1, a2). As in the previous example (see Sec. 3, I), the construction of a one-to-one map from the plane
(z1, x2) onto the plane(ay, az) in each case requires partitioning in a certain way the original coordinate-space
region into subregions and transforming their boundaries. We thus obtain in the parametef&pace the
existence region of stable orbits of period 2, whose structure and partition into subregions are shown in Figs. 6d—6f
for various values of the paramet&r

The numerical construction of the general bifurcation pattern of the existence of stable cycles of various periods
in the presence of a parametric perturbation of period 2 is shown in Figs. 7a—7c for some values of the parameter
Figure 7d is the magnified picture of the bifurcation fragment from Fig. 7a. Comparing Figs. 7b and 7d we note
that the observed structure of bifurcation regions is characterized by repetition of geometrical features on different
scales (see, e.g., [44]). This indicates that the existence regions of stable cycles of different periods are generated
and deformed in a certain way. We again have scale invariance, as for the logistic map.

Analysis of our results leads to the following conclusions regarding the family of circle maps:

() The presence of intersecting subregions in Figs. 6d—6f indicates that the map defined by the system of
equations (31) is an endomorphism, i.e., single-valued, but not one-to-one.

(i) The perturbed map (25) is multistable.

(iii) There exist scaling transformations that transform certain regions of phase diagrams of the perturbed
map (25) in a certain way, i.e., scale invariance is observed.
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Fig. 6. Existence region of stable cycles of period 2 for perturbed=( 2) circle map (25) in the coordinate space (a—c) and in the

parameter space (d—f) for various values of the paranieter
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Fig. 7. Bifurcation diagrams of the perturbed circle map (25): §a) 1.2; (b) b = 1.7; (c) b = 3; (d) magnified picture of the square
outlined in (a); the numeral 2 marks the existence region of cycles of period 2.

5. Concluding Remarks

We have considered the general properties of parametrically perturbed maps. It has been shown that the
analysis of such maps can be substantially simplified. Instead of the original nonautonomous map it suffices to
consider one of the autonomous maps that are constructed by transposing the functions defining the parametric
perturbation. The period of every cycle of the perturbed map is always a multiple of the perturbation period.

For one-dimensional polymodal maps we have derived the conditions when these maps have prescribed dy-
namics. We have thus obtained a general solution for the control problem for systems that are effectively described
by polymodal transformations.

We have studied in detail the dynamics of families of one-dimensional quadratic maps and circle maps in the
presence of a periodic perturbation in the parameter. We have shown that for perturbations of period 2 the behavior
of the family qualitatively changes. This is manifested in two basic facts.

1. The perturbed map is multistable.

2. For parameter values from the chaotic region of the original map, the perturbed system becomes regular.
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This is manifested in the creation of stable cycles of a small period. Moreover, these dynamics-changing processes
are stable in the sense that the sets of values of the perturbed parameters form certain regions. These properties
suggest that small perturbations (which are generally ignored during modeling) may lead to qualitative changes in
the behavior of the system.
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