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Abstract. It is shown, that deterministic noise (chaos) appearing via destruction~of the 
quasiperiodic motion may be easily suppressed by weak parametric perturbation of the 
system. 

1. Introduction 

It is well known that dynamical chaos is a widespread phenomenon. In this connection 
a problem of the control and deterministic prediction of the behaviour of real systems 
with chaotic dynamics on the basis of simulation modelling is very relevant. The 
problem is that while regular behaviour of the systems is stable with respect to small 
noise, an exponential instability appears in the chaotic regime,. so that any finite 
perturbations will increase with time. For a model these perturbations can appear 
when some processes in real systems are not taken into account and parameter values 
are not strictly determined. Even if all processes are clarified and an absolutely 
adequate model constructed, it is practically impossible to forecast the behaviour of a 
system with chaotic dynamics on the basis of such a model. Inevitable mistakes in the 
initial conditions lead to deviation of an expected trajectory from the actual one after 
a certain time. Therefore, at this point probabilistic or statistical approaches are 
needed. However, the probabilistic approach generally does not assure the necessary 
accuracy of description. The statistical analysis is used when there is a sufficiently 
large number of identical isolated systems or if a process being investigated may be 
repeated many times. In the case of compIex systems or processes, such an approach 
seems to be absolutely unacceptable. 

Thus, for the control and prediction of chaotic systems behaviour other ways of 
investigation should be used (see e.g. Farmer and Sidorovich 1987, Castagli 1989, 
Castagli et a1 1991, Giona et a1 1991). In the present article we propose the following 
approach: if deterministic chaos is a fundamental hindrance and its presence is 
inevitable then it is necessary to get rid of the chaos. Such a problem is solved within a 
framework of powerful action: the chaos may be suppressed by an external force (see 
e.g. Neymark and Landa 1991, Dykman eta1 1991), for example, of the type Fcos ut, 
where F is the amplitude and w is the frequency of the external force. Systems with an 
external power action of other forms with the purpose of controlling their dynamics 
were investigated as well (Jackson and Hubler 1990, Breeden er a1 1990, Jackson 1991, 
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Basti et a1 1991, Jackson and Kodogeorgiou 1992). However, the power perturbation 
is often physically unrealizable. Besides, such a solution to the problem of chaos 
suppression in many cases is inadmissible since it can lead to degeneration of the 
system to a dimension which is less by one or even more, or to transition of the system 
into an undesirable state. In contrast to a power action we consider a weukpurumetric 
influence on the chaotic system at which the chaos is suppressed. This phenomenon 
was detected numerically for certain class of biosystems (Alekseev and Loskutov 
1985a, b) and for the Rossler system (Loskutov 1987) and was called thephenomenon 
of parametric destochustizution. Results of parametric periodic influence on a system 
with chaotic behaviour aiming at  the suppression of chaos are also analysed for the 
Lorenz system (Gribkov and Kuznetsov 1989), for the Duffing-Holmes oscillator 
(Lima and Pettini 1990) and other models (Hubler 1989, Pettini 1990). Another 
approach allowing stabilization of unstable periodic orbits involved in a chaotic 
attractor was proposed in the work by Ott et ul (1990). 

The present paper is organized as follows. The phenomenon of parametric 
destochastization for flows and for maps is discussed in detail. Then, on the basis of 
numerical investigations of a circle map, a search algorithm of the necessary con- 
ditions at which one can observe parametric destochastization is proposed. Also a 
possible theoretical explanation of this phenomenon is described. 

2. Phenonenon of parametric destochastization 

In this part the key idea of parametric chaos suppression is presented. Assume that a 
system of equations describing a certain process has the form: 

j l  = V(Y > 8)  (1) 

j3’SpsB” (2) 

Y = I Y * ,  . . . ? Y J  V={V,,  . . . , V”} 

where 8 is some parameter. Suppose that in the range 

equations (1) exhibit a chaotic dynamics caused by a strange attractor. Here and 
henceforward the term ‘strange attractor’ means an atrxactor which is not the finite 
union of submanifolds of the phase space of the system (Anosov and Arnold 1988). 
Trajectories on such an attractor are unstable almost everywhere so that any two 
which are close diverge exponentially. If the initial conditions of the system with the 
strange attractor are given with some accuracy, then information about its evolution is 
lost after a time time t> fk ,  where f- is the mixing time (Mikhailov and Loskutov 
1991). The idea of parametric destochastization is the following: to find certain 
parametric perturbations superimposed on system (1) (with conditions (Z)), such that 
it is compelled to exhibit a regular behaviour. In other words one should find some law 
of variation of parameter @ in the region (2) in such a way that the strange attractor 
transforms into a simple one, for example, into a limit cycle. 

As has been shown numerically (Alekseev and Loskutov 1985, Loskutov 1992a), a 
simple condition which leads to the appearance of the destochastization phenomenon 
is the following: 

B=/%+Brsin(4 (3) 

/9*=(8”+8’)/2 [Bll sB”-j3*/2. (4) 

where o is a certain frequency, t is time, and 
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The last conditions guaranty that the quantity p found from (3) will always remain in 
the region of chaoticity (2). 

Strictly speaking, chaotic dynamics of the system (1) will not exist at every point of 
the region (2): the vicinity of any point in (2) will always contain values of the 
parameter j3 so that they give birth to regular behaviour of the system (l), but only if 
an attractor is not hyperbolic or stochastic (Afraimovich 1989). A hyperbolic attractor 
is characterized by the property of structural stability; it is a coarse hyperbolic subset. 
Systems with the hyperbolic attractor have the most pronounced chaotic properties. 
Small perturbations of such systems do not lead to qualitative reformations both of the 
attractor itself and the system dynamics. However, systems with a hyperbolic attractor 
are hypothetical models of structural stable physical systems with rigorous chaotic 
properties (Sinai 1989, Afraimovich 1989). 

A stochastic attractor is a structural unstable subset of the phase space with 
densely saddle periodic orbits everywhere. The Lorenz attractor at b=8/3, 0=10, 
r=28 (Bunimovich and Sinai 1979), the Lozi attractor (Lozi 1978), the Belykh 
attractor (Belykh 1982) and some other attractors belong to the class of stochastic 
attractors. Sufficiently small perturbations of the system with a stochastic attractor can 
lead to modification of such an attractor but at the same time the system dynamics 
remains chaotic. However, with a variation of the parameters of the system, the 
stochastic attractor can transform into a quasistochastic attractor. These transforma- 
tions take place for the Lorenz system at b = 8/3 U= 10.2, r= 30.2 (see Afraimovich ef 
al. 1980). The overwhelming majority of attractors in chaotic dynamical systems are 
quasistochastic attractors (Shilnikov 1991). A quasistochastic attractor contains saddle 
periodic orbits and stable periodic orbits, but with a small attraction basin. Small 
perturbations of systems with a quasistochastic attractor lead to complex ,qualitative 
changes in system dynamics and in the structure of the attractor. That is the reason 
why, for most systems, the region of chaoticity (2) contains subregions with regular 
dynamics. In applications however, this circumstance does not play an essential role 
since the stable orbits contained in the quasistochastic attractor have not been 
revealed numerically (Afraimovich 1989). The system dynamics with a quasistochastic 
attractor also looks chaotic. 

To clarify the reasons for chaos suppression it is more convenient to analyse maps 
instead of considering the differential equations (1). For this purpose let us insert in 
the phase space of the system (1) some (n-1)-dimensional hypersurface S (a 
hyperplane for example) and let us analyse the points of intersection of the phase 
trajectory with S. Then some set of points A, B, C, . . . on the surface S will be 
obtained. Since in S the phase trajectory is connected with these points in a unique 
way then one can introduce in the surface S some function $ that maps (converts) 
point A into the point B, i.e. B=$(A),  point B into the point C, i.e. C=$(B)= 
$($(A)), and so on. Function $ is the so-called retum map, or Poincare map. 

Introduce local coordinates on the surface S. Then the Poincare map is repre- 
sented as a function that gives the intersection point xk+l  for the known intersection 
point x, 

where p is a parameter,fis some (n - 1)-dimensional function, andxk = {xl, . . . , xi-'} 
is the totality of local coordinates on the surface S corresponding to intersection 
points. When dissipation in the system (1) is considerable, the intersection points of 
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the phase trajectory form approximately a one-dimensional curve. Then (5) can be 
presented as a one-dimensional map 

X"+l =f(xmp). (6) 
Variables k in (5) and n in (6) show the numbers of consecutive intersections and can 
be considered as (discrete) time. For every initial condition xo the map (6) generates 
an infinite sequence of points 

xo x1 =f(xo, ~2=f(~,,~)=f(f(*o,~O.~)~f(2)(xo,~), . . . 
x, =f(Xm-l, p )  =$U(. . . f ( f (XO,P) ,  PI, . . . A44 =P)(xo,p), . . . . (7) 

m times 
This sequence may possess fixed points .f and k-cycles. A sequence of points (7) 

such that X.=X.+~ ,  x . # x ~ + ~ ,  for l < i < k  and any n, is called a k-cycle or a cycle of 
period k (or a k-periodic orbit) of the map (6). One-cycle is a fixed point. Fixed points 
are found from the equationf(2,p) =f .  Obviously, the k-periodic orbits, of the map 
f (n,p)  are formed by the fixed points of the mapf(*)(x,p), which are different from 
the points of the mapf")(x,p), l < i < k .  

Dynamics of the map (6) may be both regular and chaotic depending on the values 
p and xo. If the dynamics are chaotic then the map (6) has only unstable fixed points 
and cycles. In this case the sequence (7) will be completely aperiodic, and will not tend 
to periodic orbits with increase in the iteration number n. The stability of cycles is 
determined by the value 

If 1 then the k-cycle is locally stable. As a criterion of the chaoticity of the map a 
Lyapunov exponent may also be used (see Mikhailov and Loskutov 1991). It is 
computed from the expression 

If A>O, then the map generates deterministic aperiodic sequences (7), i.e. it is 
chaotic. When A<O, the map possesses a stable k-cycle. 

Suppose that in the interval 

p' s p  sp'l (10) 
the map (7) has chaotic dynamics. Then for the parametric destochastization it is 
necessary, inside this interval, to find a certain variation of the parameterp such that 
the map 

generates the cycles of finite period. In contrast to the flows (1) the parameter p for 
the map (6) should be varied discretely with time n. In turn, p. may vary both 
periodically and by other means. In the former case which corresponds to periodic 
perturbation (3) of system (l), the sequence of values of the parameterp,, consists of 
identical subsequences of the length i: pn+i=pn,pn+k#pn, l<k<i. For the simplest 
case, i =2, the values p. form a parametric two-cycle. In order to show periodicity in 
the map (11) one should demonstrate that among the set of parameters from the 

&+I =f(-w4) P.E[",il"l (11) 
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interval b ' ,p" ] .  a certain subset exists such that the map (11) withp, from this subset 
has regular dynamics. 

3. The reason for chaos suppression 

Chaos in dynamical systems often appears via destruction of quasiperiodic motion. 
The transition to chaoticity in this case, one can describe effectively by the use of a 
circle map (Shuster 1988, Mackay and Tresser 1986, Kaneko 1986): 

x-+f(x,p) mod 232. (12) 
Heref(x,p)E[O,27E], f(O,p)=f(2n,p) andf(x+27E)=f(x,.u)+2n. A circle map is 
quite an important model since it is used to simulate a variety of phenomena, for 
example, the Josephson junction with periodic perturbations (Bak et a1 1988), 
periodically stimulated nonlinear oscillators (Mandel and Kapral 1983) with various 
biological, chemical (Dolnik et a1 1984, Glass et al1984), and medical (Courtemanche 
et aZ1989, Glass and Mackay 1988, Glass 1991) applications. 

As the function f (x,p),  the so-called 'sine' function of the shape JTx,a, b)= 
x + a+ b sinx is often chosen (where a and b are parameters). In this case the circle 
map (12) will take the form 

x,,~ =xn + a + b sinx., mod 2n. (13) 
At b < l  the map (13) is a C"-diffeomorphism of the circle (figure l(a)), and its 

dynamics is sufficiently well known (Arnold 1965, Guckenheimer and Holmes 1990). 
In particular for any initial point x, there exists the number 

which is called the rotation number. If the rotation number p is rational, i.e. p=p/q 
where p and q are integers then the map (13) has an equal number of stable and 
unstable q-periodic orbits. In the general case, almost all other orbits will be attracted 
to the stable ones with an increase in the number n, and the dynamics of the circle map 
will be periodic. If the rotation number p is irrational, i.e. p#p/4. then the orbits will 
be dense everywhere on the circle so that the behaviour of the map (13) will be 
quasiperiodic. 

When b>l the map (13) is not one-to-one (figure I(c)). This signifies that the 
circle map (13) can generate an aperiodic sequence, i.e. can have chaotic dynamics, 
depending on the initial value and parameters. Such dynamics in the circle map (13) 
appear due to well-known scenarios: period doubling, crisis or intermittency (Kaneko 
1984). Moreover, coexistence of periodic dynamics and chaos or two different types of 
chaotic behaviour in the parametric region b > 1 is possible. 

The phase diagram of the circle map is extremely complex. Let b > 1. Following 
the relation (9) let us numerically determine such regions in the plane of parameters 
(a ,b)  where A>O, i.e. the regions where the dynamics of the map (13) is chaotic. 
Then the ensuing pattern will be observed (figure 2). Analysing this figure one finds 
that the chaotic regime and the regular regime in the circle map are closely 
intertwined. (For detailed investigations see Glass and Mackay 1988 and references 
cited therein). 

Rigorous analytical investigations (Boyland 1986) allow one to find the location of 
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If If 

<e> 
Figurel. The graph of the &de map (13) at a=1.8: the one-to-one case, b = O S  (a); 
existence of the inEection point, b = 1 @); the case of the non-invenible map, b = 1.5 (c). 

an uncountable set of parameter values (a, b), b> 1, for which the map (13) possesses 
aperiodic dynamics. Namely, if for the map (13) the values a and b are such that they 
satisfy a certain functional dependence a=T(b),  and if the lift of the map (13) has a 
negative Schwarzian derivative, then the circle map (13) has no stable periodic orbits. 

Assume now that according to (11) one of the parameters of the map (13) (for 
example, parameter a) varies with time, i.e. a=an. This variation may be physically 
interpreted as a parametric disturbance of the environment. Then €or the periodic 
disturbance with period i the circle map (13) may be rewritten as follows: 

Xh+, =mnl a*, b) 

n;n+z=fi(xin+1, b) 
....................... 
x;"+i=m*+i-l> 4, b) 

Xi"+i+, =fd.%+i, a,, b) 
....................... mod 2n 
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F i p  2. StNCtUE of the parametric space (a, 6)  of the circle map (13) schematically. 

wheref,,,(x, a,,,, b) =x + a,,, + b sin n, m = 1, . . . , i. It is easy to see that the sequence of 
parametric values a,, a?, . . . ,a,, a,+l,. . . in (14) consists of the totality of subse- 
quences of the length i. According to the condition (11) all these quantities a l ,  
a*, . . . , a, should correspond to chaotic dynamics of the unperturbed map (13). 

Denote the set of values a (b =constant > 1) such that the map (13) has chaotic 
behaviour by A,. The set A, appears when the circle map becomes non-invertible 
(figure lb) and has a very complex structure (figure 2). Consequently, in some regions 
of the parametric space (a, b) small variations of the parameter a, b =constant> 1 (or 
the parameter b > l ,  a=constant) lead to a qualitative change in dynamics of the 
circle map (13). In this sense the circle map (13) is analogous to the system with a 
quasistochastic attractor. However, in the given case conditions a,cA,, j =  1, . . . , i, 
may be easily satisfied. An aprpropriate method to do this may be based, for example, 
on the choice of the step Au for the parameter a (or Ab for the parameter 6) in the 
map (14) so that ak--nk-,=Au (or bk-bk-l=Ab)r a,eA,, k = 2 , .  . . ,i, have been 
met. But from iteration to iteration Aa (or Ab) are not necessarily constant. 

In the map (14), let a,cA,, j=l , .  . . , i. Analysing dynamics in this case it would 
be expected that the map (14) will exhibit chaotic properties. But this is not true in all 
cases. The reason is that the cyclic variation from iteration to iteration of the control 
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parameter leads to the appearance of stable cycles. The following assertion explains 
this. 

Let A ,  be the set of values of the parameter a, corresponding to chaotic dynamics 
of the map (13). Let, in (14), U,EA,, j=l,.  . . ,i. Then the set A, contains certain 
quantities UTEA,, UTEA,,  . . . , &'EA., n = l , 2 , .  . . (index d comes from the word 
'destochastization') at which the map (14) with aI =e, a2=&, . . . , a,=a," will 
generate stable cycles of finite period. 

In order to be convinced of the correctness of this assertion it is sufficient to find 
only one totality of parameters 4,. . . ,d such that the map (14) generates stable 
cycles of finite period and each parameter from this totality corresponds to the chaotic 
dynamics of the map (13), a;, . . . , u ~ E A , .  

First let us consider the simplest case i=2,  b=constant, (b>l). Then the map 
(14) may be rewritten as follows 

(15) 
xb+l=fi(xb. 01, b) 
xb+z=h(xb+1, %> 6) mod 2 z  

where f , = x + a , + b s i n x ,  f ,=x+%+bsinx, a,, a2cA,. Introduce functions of the 
form a, =fi(h) =x+a,  +az+ b sinx+ b sin(x + a2+ b sinx), (P2 =fi(fi) = x  + a, +&+ 
b sin x + b sin@ + a, + b sin x) .  Then it is easy to see that the function a, corresponds 
to the odd numbers of the sequence (7) generated by the map (15), and the function 
Q2 corresponds to the even ones. Therefore, determining the initial value xo and the 
quantity xl=fl(xo), one can rewrite for the map (15) 

x~+I=flCf?)=~l(~b-*.al,aZ,b) (164 
x b + 2 = f 2 C f l ) = ~ z ( ~ b t a l , ~ z ,  6). (16b) 

The map (16a) and the map (16b). 'work' independently of each other: their iterations 
do not connect via xi, except for the initial values xo and x ,  (in contrast to the map 

It is known that for every arbitrary map g(x) any k-cycle is at the same time the 
fixed points f j ,  j =  1,2, . . . , k, of the map g("(x). Generally speaking, the converse 
statement is not true. This is due to the fact that not only the k-cycles but also the m- 
cycles, m = k/i, i= 2,3, . . . , k, (m is integer) of the map g(x) are the k e d  points of 
g")(x) .  Consequently to ensure that the fixed points iiof the map g")(x) form the cycle 
of period k it is necessary to eliminate these (k/i)-cycles from consideration. This can 
be arranged by the investigation of (k - 1) equations [g(')(X) - i ] / [g ( ' ) ( i )  -4 = 0, 
1 = 1,2, . . . , k-  1. Based upon such reasoning let us consider the functions Q1, 
and the maps (16a, b) .  

For the reason that the map (15) consists of two consequently performing 
transformations (16a) and (16b), the 2k-cycle of the map (15) will give rise to the fixed 
points .$ of the map aik) and simultaneously will give rise to the k e d  points .$ of the 
map a$*), j = 1, . . . , k. Quite the reverse, if a!') and @$"have the fixed points i,! and 
i! respectively then it is quite possible (but it is not necessary) that map (15) will have 
the 2k-periodic cycle formed by these points. These points will compose such a cycle 
for the map (15) only if the following equations 

(15)). 

[@.Ik)(i', a,, a?, b) -.t']/[@\"')(?, al, a2, b) - i ' ] = O  

[@$k)(i* ,  a,, 4 , b )  -2]/[a$"'yiz, a,, 6, b) - 2 2 1  =o (17) 

have k common solutions for all m= 1,2, . . . , k- 1. Next, the map (15) has regular 
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Table 1. Some of the stable cycles of the map (14). 

i k U: b 2; i: 2; i; i,' f," 

2 3 2.832 ~ 2.3 4.2610491 0.4430487 - - -~ - 
2.833 . '5.5060536 0.8886927 

5.6673852 
2 4 2.837. 2.3 0,6456350 

2.849 3.8378215 
5.4472391 
6.0296381 

2~ 4 2.309 2.0 0.1881688 
2.313 4.1871416 

5.0820300 
5.7106242 

~ 2 5 2.175 1.8 0.7520389 
2.176 4.1537265 

4.8025828 

0.3066119 - - - - 
5.0244363 

2.0185224 
4.8785581 
5.2117653 
0.6568658 - - - - 
2.8752882 
4.7697418 

0.7507670 - - - .  ~- 
5.5301161 

4.1576714 
4.8033898 ~~ 

~. ~ 

5.1858377 5.1858993 
5.7589478 5.7598357 

6 2 2.281 2.0 6.1074458 1.7565879 6.0051686 1.4570851 5.7371687 0.7204091 
2.282 4.3207936 4.7541909 5.M89381 5.4286282 6.2130677 2.0947620 
2.283 
2.284 
2.293 
2.305 

dynamics when it possesses the stable cycle. Thus, chaos suppression at certain 
a, =a! EA,, az= a$cA,  in the map (15) will be observed not only when map (16a) and 
(16b) have stable cycles of period k, but also when @.I*' and aik) have stable lixed 
points .$ and .f;, j =  1, . . . , k, which are roots of the equations (17). In the latter case, 
for the chosen number k, the map (15) will, of necessity, possess the stable 2k-cycle. 

However, for the search of the stable cycles of the minimal possible periods there 
is no need to consider equations (17), since the chaotic map has only the unstable 
fixed points and the unstable cycles. The appearance of the stable fixed points of the 
functions @$k), aik) at minimal possible number k means immediately that in the map 
(15) there is a stable cycle of period 2k which is formed by these points. Leaning on 
these arguments we can propose a search algorithm to determine the destochastiza- 
tion parameters a;' EA,, U ; E A ,  for the map (15). At the consecutive choice a,  and a, 
from the chaoticity set A, all fixed points of the maps aik) and @ik) should be 
considered and among them the stable ones should be determined. If at the given 
value k these maps do not have stable fixed points then it is necessary to increase the 
number k by the unit and repeat the described procedure. The investigations are 
repeated until the values a , = n ; ' ~ A , ,  a 2 = a ~ ~ A ,  are found. 

The computational techniques for determining the values a;", a: EA,, however, 
lead to an analytically intractable problem since the resulting equations for the fixed 
points are high-order transcendental equations. At the same time these equations do 
not contain any singnlarities, and therefore, it is an easy matter ta  solve them 
numerically. The numerical method allows one to conclude that there is a certain 
parameter subset a;", a?, f l  = 1,2, . . . , such that the maps @$')(x, a?, a?, b) and 
aik)(& a?, a?, b) have stable fixed points 2; and f;, j =  1, . . . , k (table 1). 
Consequently the map (15) has a stable cycle 2: period 2k at suitable al ,  a, and b. 
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To show, finally, the correctness of the above assertion it is necessary to show that 
at the values of the parameters n(a= ut, a = a!) marked on table 1, the map (13) is 
chaotic. For this purpose it is sufficient to calculate the Lyapunov exponent A (see 
formula (9)). These calculations clearly determine its positive values. 

In figure 3 one of the stable cycles of the map (15) is shown. Figure 4 demonstrates 
the points (set) a? EA,, n = 1,2, . . . , corresponding only to the stable cycles of finite 
periods of the map (15). It is easy to see that the destochastization regions of the circle 
map (15) are narrow and therefore, the probability of a random hit in them is very 
small. 

Note that at b>  1, depending on the initial value xo, the circle map (13) may have 
two different types of chaos. That is the reason why the regular behaviour of the map 
(15) at given u , , , = u ~ , ~  may correspond to not all xo; it may be both periodic and 
chaotic. Such a phenomenon takes place, for example, at af=2.311, n!=2.312 and 
b=2.0: at xo=0.5 the map (15) has a stable 2k-periodic cycle (k=4), but at x,=l.O 
the iterations of (15) do not fall into the attraction basin of this stable cycle, and 
behaviour of the map is chaotic. 

If, in the map (14), i>2 then to determine the parameters at, . . . ,  EA, it is 
necessary to consider i functions 

@i-l=f*Ucf-l(. . . f m  . . . ))) ....................... 

wheref,=x+a,+bsinx, andtheirkthiterations@~),m=l,. . . ,&andthentofind, 
at certain k, the stable fixed points .$, 27, . . . , xj, I - 1, . . . , k. If detection of the 
parametric destochastization phenomenon is pursued for the arbitrary number k then 

-i ._ 

4 

Figure3. T h e  stable %cycle of the map (15) at b=2.0, a,=2.309,o2=2.313. 
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I - 
a, zoo0 ana 

Figure4. The regions of parametric destochastization for the circle map (15) at b=2.0 
and A,=[Z.aOO, 2.0631. 

FigureS. Apartofthegraphofthefunction~~4'atb=2.3anda,=2.837,a~=2.849(a), 
a,=2.83698, q=2.849 (b), and 0,=2.8%94. a2=2.849 (c). 

in addition to these investigations it is required that the stable k e d  pointsf;, f!, . . . , 
f( ,, '-1 - , . . . , k satisfy the following equations: 

[@ik)(i', al, ~ 2 ,  . . . ,U,, b)-f']/[@{"')(f',  U,, U,, . . . ,ai, 6 )  -21 = O  
[@!!)l(i,-l, a,, az, . .~. , a,, b) --x -'-' ] / [ @!!](fi-', U,, Q, . . . ,ai, b) - P I ]  = O  

(19) .......................................................... 
[@,I"(P, U,, ~ 2 ,  . . . , U!, b) -il]/[@$m)(il, U ] ,  (22, . . . , U,, b) -a']  -0 

m = l ,  2,. . . , k-I.  

In this case we can be assured that the map (15) will possess a stable 2k-cycle (sable 1). 
A question of the loss of stability of the periodic orbits  in^ the map (15) is 

interesting. If the parameter values a,, a2 are varied in such a way that the 
destochastization phenomenon disappears, then it happens via an inverse tangent 
bifurcation. Namely, let us consider one of the stable tixed points i i  which is an 
element of the stable cycle of the map (15) (figure 5). At variation of a, (or Q) this 
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Table2. Some of the stable cycles of the map (14) at f,=x+a+b,sinx, 
m = l , .  . .,i, b,,,>l, bms& 

i k n  by 2; 27 2; 2; 

2 3 2.8 2.444 1.4811294 0.4440775 - - 
2.456 4.2940809 4.8498433 

5.2288950 5.8932804 
2 3 2.8 2.447 0.4429594 1.4818465 - - 

2.454 

3 5 2.8 2.511 
2.512 
2.514 

4 3 2.8 2.438 
2.439 
2.458 
2.468 

4.8516695 
5.8938495 
0.4371332 
5.0970256 
4.2918715 
5.5643592 
4.8004426 
1,5013996 
5.2215370 
4.4909169 

4.2917807 
5.2283660 
0.4257008 
5.0961823 
4.3014199 
5.5667114 
4.7968967 
0.4513436 
5.8918994 
4.8653594 

0.4344779 -~ ~ ~ 

5.0948576 
4.2626410 
5.5678553 
4.7995006 
1.4712884 0.4438943 
5.2360619 5.8988027 
4.3234617 4.8397809 

fixed point merges with the unstable point i and then vanishes. A similar situation 
takes place for other stable points forming the stable cycle under consideration. This 
explains intermittency, which was described in the works on numerical investigations 
of destochastization, when the perturbation amplitude (see (3)) decreases (Alek- 
seev and Loskutov 1987, Loskutov 1987). 

The above results lead to the following conclusion. 
Period m of the stable cycles generated by the map (14) is not less than i, m>i ,  

moreover m= li, I =  1,2, . . . . 
It is simple task to show this. For any sequence x,, x,, . . . , x., x ~ + ~ ,  . . . generated 

by the map (14) every (in +j-  i)th element, where j =  1,2, . . . , i, may be considered 
as the element which is generated by the following map 

xi.+j-1= %-j+,(x,*-i+j-J j = 1 , 2 , .  . . , i (20) 
where the functions Qi++l are determined by the relations (U).  The initial conditions 
for the (20) are found from the expressions: xl=fi(xo), x2=f2(xI), . . . , x. ,-I = 
fi- l(xi-z) .  Every m-cycle of the map (14) is the (m/i)-cycle of the map (20). It is clear 
that the number (mli) should be only integer, 

Note that if in the map (13) the control parameter b instead of the control 
parameter U is chosen, i.e. if b=b(n)=b.>l, u=constant, then the above results 
(assertion and conclusion) are just the same: at certain values b!, . . . ,bye B, (where 
B, is the set of parametric values b, a=constant, at which the map (13) does not have 
stable periodic orbits) the map (14) with the functions f,=x+u+b,sinx, m =  
1, . . . , i, will also generate the stable cycles of finite period (table 2) .  

Thus, we see that the very weak parametric perturbation (sometimes 4 - & 
(!)) may destochastizate a system with complex (chaotic) dynamics; after suppression 
of the chaos, in principle one can predict its behaviour. 

It is important that stability of the points& a:, . . . , .fi is not disturbed when small 
additive random perturbations do not exceed certain threshold action. This is 
understood by reference to Figure 5(a): the curve y = @Ik) and the bisectrix y = x  cross 
each other in a typical way. In every particular case the threshold amplitude of the 
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noise action may be estimated from analysis of the intersection depth. For example, 
for b=2.3, i=2, a:=2.832, a$=2.833 this threshold is -5x10-6. 

4. Discussion 

Chaotic dynamical systems exhibit non-predictability and non-controllability proper- 
ties. Owing to exponential instability any attempt to predict their behaviour runs into 
practically insurmountable problems. That is the reason why, to forecast the evolution 
of such systems, one resorts to highly laborious methods employing more and more 
powerful computers. Recently several new methods for controlling chaotic systems 
have been proposed (Ott eta1 1990, Ditto eta1 1990, Hubler 1989, Jackson 1991, Basti 
et a1 1991). The use some of them allows one to carry out stabilization of the unstable 
periodic orbits which exist in the chaotic attractor. 

In the present study we considered another method-parametric 
destochastization-which allows one to easily realize control over dynamical systems 
with complex behaviour (i.e. to realize so-called non-feedback method for controlling 
chaos). With the use of weak, defined perturbations of some parameter one can cause 
the system with chaotic oscillations (that appear via destruction of the quasiperiodic 
motion) to transit into a regular regime. An important point is that such a regime is 
non-sensitive to small random external fluctuations. In turn, having got lid of the 
chaos, it is possible, in principle, to predict quantitatively dynamics of the systems. 
For systems in which development of chaotic behaviour may be described effectively 
by means of a quadratic map, the chaos can also be suppressed (Loskutov TL992a, b). 
Moreover, parametric destochastization is evidently an inherent part of self- 
organEation phenomena when the order arises from the developed chaos. Although 
only the possibility of suppression of temporal chaos is studied, the appearance of 
parametric destochastization in distributed systems which can be approximated by a 
coupled-maps lattice is admitted as well (Loskutov and Thomas 1992). 
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