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The paper is devoted to the problem of Fermi acceleration in Lorentz-type dispersing billiards
whose boundaries depend on time in a certain way. Two cases of boundary oscillations
are considered: the stochastic case, when a boundary changes following a random function, and a
regular case with a boundary varied according to a harmonic law. Analytic calculations
show that the Fermi acceleration takes place in such systems. The first and second moments of
the velocity increment of a billiard particle, alongside the mean velocity in a particle
ensemble as a function of time and number of collisions, have been investigated. Velocity
distributions of particles have been obtained. Analytic and numerical calculations have been
compared. ©1999 American Institute of Physics.@S1063-7761~99!02111-3#
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1. INTRODUCTION

The term billiard is applied to a dynamic system i
which a point-like particle moves within a certain regionQ
with a piecewise smooth boundary]Q under the condition
that the law of equality between the angles of incidence
reflection applies. Depending on the billiard boundary co
figuration, the motion of the particle~billiard ball! can be
regular, ergodic, or mixing. The termdispersing billiard1

applies to a system whose boundary]Q is convex inside the
regionQ. It is well known that such a billiard has a mixin
property, and the billiard ball dynamics in this case is ch
otic.

If the set]Q is constant with time, the system is called
billiard with a constant ~fixed! boundary, but if ]Q
5]Q(t), this is a billiard with a perturbed~moving! bound-
ary. Billiards with fixed boundaries have been well studi
~see Refs. 1–7 and references therein!. At the same time,
there have been very few publications devoted to billia
with perturbed boundaries,7–11 although their studies are o
great interest from the viewpoints of both solutions of so
problems of statistical mechanics and the feasibility of
unbounded increase in a ball velocity, the latter probl
originating from that of the so-called Fermi acceleration.12,13

Fermi acceleration is the phenomenon of infinite acc
eration of particles of various nature owing to their scatter
by moving massive scatterers. This mechanism of accel
tion was first suggested by Fermi12 to account for the origin
of cosmic rays of very high energies. Later various mod
were suggested,14–21 which described this phenomenon wi
a lesser or greater degree of success. For example, Ul14

demonstrated that, if a particle moves between an oscilla
and a fixed wall, and the oscillation phase of the former
the moment of collision is a random value, the particle c
acquire an infinitely high velocity. A more detailed inves
gation of Ulam’s model was conducted by Lieberman a
Lichtenberg,16 who showed that, in the case of a smooth tim
9661063-7761/99/89(11)/9/$15.00
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dependence of the wall velocity, stochastic layers are se
rated by invariant curves. These curves set limits on the
ergy acquired by the particle. If this dependence is not s
ficiently smooth, there are no invariant curves, and
particle velocity can increase without bound. Later inves
gations~see Refs. 16,19–21 and references therein! of vari-
ous versions of Ulam’s model revealed some relation
tween the law governing wall oscillations~i.e., the
smoothness of the wall velocity as a function of time and
degree of its randomness! and the presence of the Ferm
acceleration.

In chaotic billiards, even if the boundary velocity is
smooth function of time, the incidence angle of a particle c
be treated as a random parameter. Consequently, the no
velocity component at the collision point~this is the compo-
nent that changes as a result of scattering, whereas the
gential component is constant! is a stochastic value. Obvi
ously, changes in the velocity are also random in this ca

The paper is devoted to the problem of Fermi accele
tion treated on the example of a generalized billiard, nam
a Lorentz gas with an open horizon and a perturbed bou
ary. We focus attention on two different cases of stocha
and regular~harmonic! oscillations of the boundary. Note
that in all publications on this topic of which we are awar
the problem of Fermi acceleration was investigated in in
grable or almost integrable systems. In view of this, our
per presents the first investigation of chaotic billiards w
perturbed boundaries.

The paper comprises three main sections. The firs
them is devoted to the basic concepts and derivation of m
that describe the dynamics of a billiard. The second
scribes the analytic and numerical study of the feasibility
Fermi acceleration. The third presents numerical calculati
of the particle velocity as a function of time and number
scattering events, and compares them to analytic results
© 1999 American Institute of Physics
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2. LORENTZ GAS

This section is devoted to the main concepts and der
tion of mappings that determine the dynamics of a tw
dimensional Lorentz gas.

Consider a plane areaQ with a piecewise smooth bound
ary ]Q. The dispersing billiard1,4 is a system composed o
neutral]Qi

0 and dispersing]Qi
1 ~i.e., convex in the region

Q) sections of the boundary]Q. One representative of suc
billiards is a system defined in an unbounded domainD and
composed of a set of round infinitely heavy scatterersBi with
boundaries]Qi and of radiiR located at sites of an infinite
periodic lattice with perioda ~Fig. 1!. Given thatBi are
fixed, the billiard in the regionQ5D\ø i 51

r Bi is called a
Lorentz gas. A particle moves among the scatterers and
flects from them in accordance with the mirror reflecti
law. Such a billiard has been studied in detail in the case
]Q5const~see Refs. 1, 3, 4, 6 and references therein!.

The ratio (a/R)2 is one of the main parameters of th
Lorentz gas. Depending on this parameter, we distingu
Lorentz gases with a bounded horizon@(a/R)2,4#, with an
open horizon@4,(a/R)2,8#, and with an infinite horizon
@(a/R)2.8#. In the first case, the particle motion is limite
to one lattice cell, in the second and third cases it can tra
throughout the entire space. In the case of an infinite horiz
statistical properties of a billiard change because of hig
probabilities of long free paths,3,4,22–24whereas in Lorentz
gases with bounded and open horizons correlations de
exponentially. The mean free path is defined asl 5pA/P,
whereA is the area of a billiard where a particle can go a
P is the scatterer perimeter. For a system with an open h
zon l 5(a22pR2)/2R, and for a billiard with an infinite ho-
rizon l has no upper bound.

Suppose that the radii of scatterersBi in a Lorentz gas
are perturbed in accordance with a certain law, i.e.,
boundaries]Qi perform small oscillations in the normal d
rection. In this paper we consider two different cases: p
odic ~and phase-synchronized! oscillations, and random
changes in scatterer radii. The first case corresponds to
situation when all boundaries oscillate in phase following
same law. The second case describes oscillations of m
scatterer boundaries with the initial phases distributed r
domly.

FIG. 1. Configuration of Lorentz gas model. The scatterers~circles of radius
R) are located at sites of a periodic lattice with perioda.
a-
-

e-

of

h

el
n,
r

ay

ri-

ll

i-

he
e
ny
n-

2.1. Lorentz gas with a fixed boundary

It is known that one can select as canonical variables
billiards with unperturbed boundaries the azimuthal an
f and incidence anglea between the interior normal to th
surface and particle velocity before the collision. Let us
troduce the reflection anglea* between the exterior norma
and velocity after the collision~Fig. 1!. It is obvious that
fP@0,2p#, and the anglesa anda* vary over the interval
@2p/2,p/2#. In order to describe the dynamics of an unpe
turbed billiard, one has to calculate a mapping (an ,fn)
→(an11 ,fn11) which transforms the variables (a,f) at the
moment before thenth collision with ]Q to their values at
the moment before the (n11)th collision. It clearly follows
from geometrical considerations~Fig. 1! that

fn1an* 1p5fn111an11 . ~1!

Moreover,an* 52an since these angles are measured in
posite directions.

Let us introduce a reference frame with its origin at t
center of a circle on which the latest scattering event
taken place and determine the equation of the straight
along which the particle travels after the collision. Then o
can easily calculate the distance at which the particle pa
another center at a distance ofp cells along the horizonta
axis andq cell along the vertical axis:

dn115a@p sin~fn1an* !2q cos~fn1an* !#2R sinan* . ~2!

The parameterp is assumed to be positive if the partic
moves on the right of the center and negative if the part
moves on the left. Accordingly,q is positive if the particle
moves upwards and negative if it moves downwards. T
valuesp andq are determined using the scattering conditio
i.e., these are integers with the smallest absolute value
which the conditionudn11u<R is satisfied. After calculating
the impact parameterdn11 , one can easily calculate th
angle at which the collision with the next scatterer will ta
place:

an115sin21
dn11

R
. ~3!

The Jacobian of the resulting mapping defined by Eqs.~1!–
~3! is

]~fn11 ,an11!

]~fn ,an!
5

cosan

cosan11
.

Thus, the mapping preserves the phase volume cosadadf.
Hence follows, in particular, that if the billiard is ergodic, th
distribution with respect toan is described by the formula

ra~a!5
1

2
cosa, ~4!

where 1/2 is the normalization factor.

2.2. Lorentz gas with oscillating scatterer boundaries

Now we can easily obtain a mapping that describes
dynamics of a billiard with a perturbed boundary under t
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assumption that the boundary oscillation amplitude is m
smaller than its radius, i.e., we can neglect geometr
changes in its boundaries.

Suppose that the dispersing component]Q1 of bound-
ary ]Q contracts and expands~Fig. 1!, so that its radius
varies following the law

R5R~ t !5R1r ~ t !, where maxur ~ t !u!R.

Then the boundary velocity is a function of time,u(t)
5 ṙ (t). Further, we assume for definiteness thatu(t)
5u0 cos(vt), where u05vr 0 . In this case, in addition to
parametersa andf, we have to introduce another two var
ables, namely, the particle velocityv and collision timet.
Given that only the normal~radial! component of the veloc
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ity changes in the process of scattering, and the tange
component remains unchanged, we obtain a mapping for
absolute value of particle velocity after the collision:

vn115Avn
224unvn cosan14un

2. ~5!

Hereun[u0 cosv tn is the boundary velocity at the momen
of the nth scattering event. The relation between the ang
of incidence and reflection, in its turn, can be expressed

an* 52sin21S vn

vn11
sinanD .

Now, by calculating the separation between sequential s
tering events, one can easily obtain a mapping for the co
sion timetn :
tn115tn1
l n11

vn11
,

l n115A@R~cosfn112cosfn!2pa#21@R~sinfn112sinfn!2qa#2. ~6!
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Herel n is the free path. Under the assumption thatr !R, the
mappings for variablef and impact parameterd are the
same as for the unperturbed billiard@Eqs.~1! and ~2!#.

3. FERMI ACCELERATION

As a result of impacts with a perturbed boundary, t
billiard ball velocity always changes. As earlier research
shown,11 these changes in the velocity are random. The
fore, let us consider an ensemble of particles and calcu
their velocity distribution and average velocity as a functi
of time t and number of collisionsn ~the number of collisions
and time are not directly proportional because a faster
ticle undergoes more impacts during a time interval tha
slower one!. In this section, we will first consider the issue
the mean change in the velocity in billiards with arbitra
shapes and perturbed boundaries, then we will discuss
problem of Fermi acceleration in a Lorentz gas with ra
domly and regularly oscillating scatterers.

3.1. Average change in the velocity in the general case

Consider two sequential collisions of a ball hittin
against a wall in a billiard of an arbitrary configuration~Fig.
2!. Denote bya0 the particle incidence angle in the fir
collision, and bya1 this angle in the second collision~they
are introduced as in Sec. 2.1!. Further, denote byv0 andv1

the absolute values of the ball velocity before the first a
second collisions, respectively. The velocity components
labeled by the following indices: the superscriptst and n
denote the tangential and normal velocity components,
spectively, the first subscript is the velocity index, the seco
is set to unity if the velocity component is considered bef
the collision and to zero after the collision. Thus,v10

t denotes
the tangential component of velocityv1 at the point of the
first collision, andv11

t is the tangential component at th
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point of the second collision. In the general case, they are
equal ~Fig. 2!. Let u(t) be the boundary velocity. The fol
lowing relation should, obviously, hold:

^u~ t !& t50, ~7!

which means that the boundary remains, on average, a
place.

Consider a single collision between a particle and a w
The tangential velocity component in this case is, obvious
constant, whereas the change in the normal component
be easily calculated in the reference frame connected to
wall. Thus, we can write for the first collision

v10
n 52v01

n 12u~ tn!52v0 cosa012u~ tn!,

v10
t 5v01

t 5v0 sina0 , ~8!

v15Av0
224v01

n u~ tn!14u2~ tn!.

It is clear that, if only one collision is considered,^Dv10
t &

50 and^Dv10
n &50 for a billiard of an arbitrary configura

tion. Moreover, changes in the velocity are associated o

FIG. 2. Billiard of an arbitrary configuration.
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with the normal component since the tangential compon
is unchanged after the reflection. Consequently, the ave
growth in the velocity depends on the normal velocity co
ponent in the next collision. In the general case, howev
one can consider only the average velocity component,

^v11
n &5^v1 cosa1&

5^Av0
224v0u~ t !cosa014u2~ tn!cosa1&, ~9!

where averaging is performed over anglesa0 and a1 and
time t.

It seems appropriate to illustrate Eq.~9! on two ex-
amples.

Ulam’s model.14,16–21 Two parallel heavy walls are
placed at distanceL between them, and a ball moves betwe
these walls. One wall oscillates periodically with amplitu
d such thatL@d. The specific time dependence of the
oscillations is unimportant for our analysis, the only impo
tant point is that the wall motion should satisfy condition~7!.
Since the tangential velocity component in this model is c
stant,vt5const, the velocity and incidence angle are rela
by the formula

v sina5vt5const. ~10!

The normal velocity component, in its turn, has the sa
absolute value before the first collision,v10

n , and before the
second,v11

n . Consequently,

^v11
n &5^v10

n &5^2v01
n 12u~ tn!&5v01

n .

Thus, there is no particle acceleration on average in
model.

Lorentz gas.Owing to the strong mixing in this mode
we can assume that anglesa0 anda1 are mutually indepen-
dent, hence

^v11
n &5^cosa1v1&a0 ,a1 ,t5^cosa1&a1

^v1&a0 ,t .

Therefore, fluctuations in the velocity~increase and de
crease! due to collisions are associated with changes in
absolute value, but not in its normal component, as wa
the previous case. As will be shown below, the value^vn&
increases withn, therefore Fermi acceleration is feasible
the Lorentz gas.

This conclusion can probably be extended to other s
tems in which the incidence angle and velocity are not
rectly related by Eq.~10!, as in Ulam’s model. An interme
diate configuration between Ulam’s model and a scatte
billiard is the ‘‘stadium-shaped’’ billiard, in which the feas
bility of Fermi acceleration was studied numerically.11

3.2. Stochastically perturbed scatterer boundary

Let the boundary velocity of a scatterer at which thenth
collision takes place be

un~ t !5u0 coswn , ~11!

whereu0 is the boundary velocity amplitude, and$wn% is a
set of uncorrelated random values uniformly distributed o
the interval@0,2p). Let us calculate the velocity distributio
function and the average velocity in an ensemble of partic
nt
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as a function of the numbern of scattering events and timet.
In the case of a low particle velocity,v!u0 , the major con-
tribution to velocity given by Eq.~5! is due to the last term
on the right-hand side, hence

vn11'2uu~ tn!u.

If boundary oscillations are determined by Eq.~11!,

^vn11&'2^uu~ tn!u& t54
u0

p
.

Thus, even after the first collision, the average velocity
comes larger thanu0 .

Now let us calculate the change in the velocity
v@u0 . By expanding the right-hand side of Eq.~5! in pow-
ers ofu/v, we obtain an expression for the velocity chang

Dvn5vn112vn522un cosan12
un

2

vn

3sin2 an1vnOS S un

vn
D 3D , ~12!

whereun is the scatterer boundary velocity during thenth
collision.

Using Eq.~4! and the uniformity of the phase distribu
tion at the moment of collision, we obtain̂Dvn& and
^(Dvn)2&:

ms[^Dvn&5
Ms

v
, ss

2[^~Dvn!2&5
4

3
u0

2 . ~13!

Here we have introduced for simplicity of further calcul
tions the parameterMs[u0

2/3, where subscripts denotes the
stochastic effect. After averaging, only the second term
the right of Eq.~12! contributes to the velocity increase, an
in calculations of the variance the first term is sufficient.

If the numbern of scattering events is sufficiently large
we can replace the first equation in~13! with a differential
equation

]v~n!

]n
5

Ms

v~n!
. ~14!

Its solution with the initial conditionv(0)5v0 yields the
most probable velocity as a function of the number of co
sions:

v~n!5A2Msn1v0
2. ~15!

Since the particle velocity is expressed as a sum of indep
dent random quantitiesDvn with known mean and variance
it follows from Lyapunov’s central limit theorem that th
distribution function of the random valuevn5v0

1( i 51
n Dv i tends to a normal distribution with meanv(n)

and variancenss
2 . Thus, the velocity distribution has th

shape of a spreading Gaussian. The position of the distr
tion peak is at the most probable velocityv(n), proportional
to the square root ofn.

This reasoning applies only to the case of a sufficien
high particle velocity,v@u0 . In order to describe the distri
bution at lower velocities, let us introduce an additional co
dition, namely, that there is no flow of particles to the regi
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of negative velocities: (v]r/]v)v5050. It is well known
that the Gaussian distribution that satisfies this condition
the form

r~v,n!5
1

ssA2pn
FexpS 2

@v2v~n!#2

2ss
2n

D
1expS 2

@v1v~n!#2

2ss
2n

D G . ~16!

This allows us to calculate the mean velocity in the parti
ensemble as a function of the number of scattering even

V~n!5ssA2n

p
expS 2

v2~n!

2ss
2n

D 1v~n!FS v~n!

ssA2n
D ,

~17!

where F(x)5(2/Ap)*0
xexp(2x2)dx is the error function.

HereafterV denotes the mean velocity in the particle e
semble. By substituting all coefficients and expanding
expression for the velocity, we obtain

V~n!5CAn1OS 1

An
D , ~18!

where the constant C5A2@ss exp(2Ms/ss
2)/Ap

1F(AMs/ss)AMs#'1.143u0 .
Thus, Eqs.~16! and~18! determine the velocity distribu

tion and the mean velocity in the ensemble as functions
the number of scattering events.

To calculate the mean velocity versus time we use
Fokker–Planck equation:

]r~v,t !

]t
52

]

]v
@Ar~v,t !#1

1

2

]2

]v2
@Br~v,t !#,

where the factorsA andB are given by the expressions

A[ K Dv
t L 5

Ms

l
, B[ K Dv2

t L 5
ss

2v

l
.

Here the mean time between collisionst5 l /v, l is the mean
free path, andDv andDv2 are defined by Eq.~13!. By sub-
stituting the resulting coefficients in the equation, we obt

]r~v,t !

]t
52

Ms

l

]

]v
r~v,t !1

1

2

ss
2

l

]2

]v2
@vr~v,t !#. ~19!

If parametersMs andss are determined in accordance wi
Eq. ~13!, the solution of this equation in the limit of hig
velocities much larger than the initial value, i.e., after a s
ficiently long time interval, tends to

r~v,t !5
1

A2tApv
expS 2

v
2tAD ,

whereA5Ms / l . The latter expression yields the mean p
ticle velocity:

V~ t !5
Ms

l
t1v05

1

3

u0
2

l
t1v0 . ~20!
s
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Thus, the system under investigation gives rise to
Fermi acceleration, with the particle velocity increasing a
linear function of time.

3.3. Periodically perturbed scatterer boundaries

Suppose that all scatterer boundaries contract and
pand following a certain periodic law with a constant initi
phase. Then, during one half of the period, the particle
locity should increase as a result of collisions and decre
during the other half. If the particle velocity is high enoug
the timets between scattering events is longer than the
riod T of scatterer oscillations. This leads to correlations
particle velocity variations, so the sequential increments
the velocity defined by Eq.~12! can no longer be treated a
independent.

This section presents numerical calculations of the
locity variance and its average increase, alongside the de
rate of the correlation functionR(m)5(DvnDvn1m). They
indicate, in particular, that correlations can lead to larger fi
and second moments of velocity distributions. The calcu
tions were performed on the basis of the Lorentz gas mo
with the following parameters: the scatterer radiusR50.4;
the separation between their centersa51 @thus, the basic
model parameter (a/R)256.25#; the amplitude of the scat
terer surface velocityu050.01; the oscillation frequency
v51.

It follows from the analysis of the previous subsecti
that at high particle velocitieŝDv&;1/v. Therefore, the
variable most convenient for the analysis and graphic rep
sentation isM[^Dv&v. Figure 3 showsM plotted against
the particle velocity in the case of stochastic~curve 1! and
periodic~curve2! boundary oscillations. One can see that,
the case of stochastic oscillations, the variableMs'u0

2/3 co-
incides with to the result of the previous subsection. In
case of regular oscillations,Mr first increases, and then mo
likely tends to a constantMr

max5(1.1560.10)u0
2 at v>15,

which corresponds in this specific billiard configuration
n>150 particle collisions with the boundary during one o

FIG. 3. ParameterM[v^Dv& as a function of particle velocity. Curves1
and2 are calculated by the Lorentz gas model for the cases of random
regular boundary oscillations, respectively. Curve3 is calculated using the
simplified mapping~22!. The dashed line showsMs in the Lorentz gas in the
case of stochastic boundary oscillations calculated by Eq.~13!. Results are
obtained atu050.01, a51, andR50.4.
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cillation period on average. In addition, it is clear that t
particle acceleration in the case of regular boundary osc
tions is a factor of three to four higher than in the case
stochastic oscillations.

For the analysis of velocity changes in chaotic billiar
with periodically oscillating boundaries, the following ap
proach can be suggested. Consider an approximate map
for velocity ~12!. Since correlations between parametersan

decay exponentially~as follows from the billiard configura
tion!, the formulas can be averaged overa using Eq.~4!.
Then

^Dv&a52
p

2
u0 cosvtn1

u0
2 cosvtn

vn
. ~21!

During the oscillation period, the largest contribution
changes in the velocity is due to the first term on the rig
Therefore, it is sufficient in the first approximation to ta
into account only the changes in the velocity due to the fi
term, and the second can be neglected. On the other h
correlational corrections to the second term generate term
higher orders than that of its average. Therefore, correla
effects in the second term can be neglected. For this rea
the two values related to the first and second terms can
calculated independently:

^Dv&5^Dv& I1^Dv& II ,

where ^v& II5u0
2/(3v), which coincides withms in the sto-

chastic case@Eq. ~13!#, and ^Dv& I is the correction due to
correlations. Discarding the second term on the right of
~21!, we have the following mapping for calculating^Dv& I :

vn115vn1g cosun , un115un1
l n11v

vn11
. ~22!

Hereg52pu0/2, and the collision phaseun[vtn is substi-
tuted for time. This mapping is exactly equivalent to Ulam
well-known mapping,14–21 the only difference being that in
this case the free pathl n is a random parameter distribute
over a certain interval.

Let us analyze numerically this mapping at the sa
values ofu0 and v as those selected in our analysis of t
Lorentz gas. Suppose that the free pathl n has a normal dis-
tribution with meanl 50.62 and variances l

250.657. This
corresponds to the variance and mean free path calcu
numerically atR50.4 anda51 ~see the previous subse
tion!. Figure 3 showŝDv& Iv1u0

2/3 ~curve3! derived from
mapping~22!. One can see in the graph that the first mom
of the velocity distribution defined by this mapping becom
positive, but it is still smaller than the observed veloc
increase in the Lorentz gas. Nonetheless, this mappin
easier for analysis than Eq.~21!.

Now let us estimate the variance and decay rate of c
relations in the velocity change. Suppose that the part
velocity is so high that its change aftern scattering events is
negligible. It is clear that, in order to satisfy this conditio
one can choosev andu0 in a proper manner. Let us calcula
correlations between velocity incrementsDvm and Dvm1n

@Eq. ~12!# for n→`. Taking into account in the first approx
mation only the first terms on the right of Eq.~12!, we obtain
-
f

ing

t.

t
nd,
of
n
n,

be

.

e

ed

t
s

is

r-
le

R~n![^DvmDvm1n&5u0
2 p2

4
^cosvtm cosvtm1n&,

which takes into account, as follows from Eq.~4!, that
^cosan&5p/4. By setting the oscillation frequency to unit
and introducing the notationSn[( i 51

n tm1 i , where t i5t i

2t i 21 , we obtain

^costm costm1n&5^costm cos~ tm1Sn!&.

The variableSn can be expressed as

Sn5(
i 51

n

~ l 1D l i !/v,

whereD l i is the deviation from the mean free path on thei th
collision. SinceSn is the sum of independent random qua
tities, its distribution at largen tends to the normal distribu
tion with meannl and variancens l

2 , wheres l
2 is the mean

free path variance. By expanding the cosine of the sum
averaging overSn , we obtain the following expression fo
the correlation function of velocity increments:

R~n!.
p2

8
u0

2 cos~vnt!expS 2
n

ND , ~23!

where v is the frequency of scatterer oscillation
N5v2/(v2s l

2). Thus, correlations between sequent
changes in the particle velocity are the stronger, the hig
the velocity, and their ‘‘half-life’’N, i.e., the number of col-
lisions after which correlations drop by factore, increases
proportionally tov2. Note that the number of collisions ove
one period is proportional tov. Thus, in order to estimate
correctly the velocity variance, one has to average over
larger number of oscillation periods, the higher the parti
velocity. The issue of how this can be done, however,
remained unresolved.

In order to estimate the variance in the first approxim
tion, let us consider the velocity increment after two sequ
tial collisions with the boundary. In this analysis, we assu
that correlations among three and more increments are
ligible. In the limit of a high velocity of a billiard particle,
the correlator of sequential velocity increments can be e
mated by the formula

^DvnDvn11&5u0
2 p2

4
^cos2 vtn~12O~t2!!&

5u0
2 p2

8
1OS u0

2

v2D .

From this expression and Eq.~13!, we derive

s r
25

^~Dvn1Dvn11!2&
2

'S 4

3
1

p2

8 Du0
2 . ~24!

Figure 4 shows numerical and analytic estimates of
velocity increment variance in the stochastic~dashed line!
and regular~solid lines! cases. In the case of stochastic o
cillations, the numerical and analytic@Eq. ~13!# estimates are
identical, so the graph shows only numerical calculations
ss

2 . Regular oscillations are characterized in this graph
the straight line defined by Eq.~24! and the broken line
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calculated numerically. In order to take into account corre
tions between velocity increments, we calculated in the re
lar case the effective variances r

25^DV2&/Nmax, whereDV
is the total velocity increment afterNmax collisions. Given
Eq. ~23! describing the correlation function decay, w
equatedNmax to 10v2/(v2s l

2), which is a factor of ten highe
than the characteristic correlation decoupling number. A
shown by the graphs, the variancess

2 in the stochastic case i
constant, whereas in the regular case (s r

2) it grows with the
velocity. In addition, the variance in the regular case de
mined by Eq.~24! is slightly overestimated.

Thus, the numerical and analytic estimates given in t
section indicate that particle acceleration should occur
chaotic billiards with periodically oscillating boundaries. W
can most likely say that deterministic chaoticity is a su
cient condition for Fermi acceleration. Moreover, period
oscillations of billiard boundaries lead to a higher partic
acceleration.

3.4. Numerical results

This section presents numerically calculated particle
locity as a function of the number of scattering events a
time in comparison with the analytic estimates given abo
The calculations were performed by the Lorentz gas mo
with the following parameters: the amplitude of the scatte
boundary oscillation velocityu050.01; the scatterer radiu
R50.4; the distance between their centersa51; the fre-
quency of boundary oscillationsv51; the initial velocity
v051. Thus, the mean free path calculated analytically
these parameters,l 50.6216815. The numerical calculation
of the mean free path@Eq. ~6!# and its variance in this spe
cific billiard configuration yieldl 50.6216360.00003 and
s l

250.65760.001.
The difference in realizations was in the initial values

a and f, which were selected at random. Two differe
cases were investigated: stochastic oscillations of scat
boundaries with initial phases distributed uniformly a
regular oscillations of boundaries. In both cases, the billi
ball ~particle! dynamics was determined by the mapping d
rived in Secs. 2.1 and 2.2. The scatterer boundary oscilla
velocity in the first case was defined by the formu

FIG. 4. Variance versus particle velocity in the Lorentz gas in the case
stochastic~dashed line! and regular~solid lines! oscillations. The straight
line shows the theoretical estimate of the variance in the regular case b
~24!. The calculations were performed atu050.01, a51, andR50.4.
-
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is

r-

is
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f
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n

un5u0 coswn , wherewn is a random parameter uniforml
distributed over the interval@0,2p), and in the second cas
by the formulaun5u0 cosvtn , where tn is the moment of
collision between the particle and boundary. For each c
100 realizations of billiard dynamics were investigated. T
averaged velocity as a function of the number of scatter
events and time is plotted in Figs. 5 and 6, respectively
both graphs, the solid lines plot the data for the regular ca
and the dashed line corresponds to the case of random o
lations.

Figure 5 shows the averaged velocity of an ensemble
particles versus the numbern of scattering events over th
range of 53108 iterations. It is clear that both curves a
accurately approximated by the square-root function~18!. In
the case of stochastic oscillations, parametersMs and ss

were derived from Eq.~13!, and in the regular case the lim
iting valuesMr ands r were derived from numerical calcu
lations described in the previous subsection.

The curves of the mean velocity versus time~Fig. 6! plot
the data averaged over 100 realizations in the stocha
~dashed lines! and regular~solid lines! cases. The particle
dynamics was simulated over a time interval of@0, 33106#
time units, and some trajectories of ‘‘fast’’ particles cover
up to 33109 iterations. The mean particle velocity was a
proximated using Eq.~20!. The parameterMs was calculated
for stochastic oscillations by Eq.~13!, and for regular oscil-
lations as a limit ofMr obtained in the previous subsectio
The curves show that the growth in the particle velocity
approximately linear, and the approximation of the avera
velocity by Eq.~20! is in reasonable agreement with com
puter simulations.

4. CONCLUSIONS

Billiards are fairly convenient models of a set of phys
cal systems. For example, particle trajectories in billiards
specific configurations can be used in modeling many

of

q.

FIG. 5. Mean particle velocities as functions of the number of scatter
events in the Lorentz gas~curves1 and2! and their approximations by Eq
~18! ~curves3 and4!. The dashed lines correspond to stochastic bound
oscillations, the solid lines correspond to regular oscillations. The avera
was performed over 100 process realizations with different velocity dir
tions selected at random. The calculation were performed atu050.01,
a51, andR50.4.
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namical systems. Moreover, most approaches to
problems of mixing in many-body systems originate fro
billiard-like problems. A natural generalization of a billiar
system is a billiard whose boundary is not fixed, but var
following a certain law. This is a relatively new field o
research, which opens new prospects in studies of probl
that have been known for a long time, but have been po
investigated. For example, the problem of particle dynam
in a billiard whose boundary changes with time has a dir
physical application as a model of nonequilibrium statisti
mechanics. As follows from the existing literature, the d
namical properties of a billiard with perturbed boundaries
important: if its dynamics is chaotic, boundary perturbatio
can lead to an infinite growth in the particle velocity, i.e
such a billiard demonstrates Fermi acceleration.

In the present article, we have studied the problem
Fermi acceleration in dynamical systems generated by t
dimensional dispersing billiards with perturbed boundari
A billiard with a boundary like that of the Lorentz ga
oscillating in accordance with a certain law has been inv
tigated. It is well known that the conventional Lorentz g
~i.e., that with an unperturbed boundary! has clearly demon-
strated chaotic properties~mixing, decay of correlations
etc.!. Perturbation of boundaries in such a billiard leads
the Fermi acceleration. This model has been studied in
versions, namely, those with stochastically and regularly
cillating scatterer boundaries. It has turned out that the
celeration is higher in the case of periodical bound
oscillations.

We can identify two basic acceleration mechanism
which have been discovered in deriving the particle veloc
distribution as a function of the number of scattering eve
in the case of stochastic oscillations~Sec. 3.3!. The first is
the mechanism deriving from the condition^Dv&.0 @Eq.
~13!#, which drives all particles to the side of higher veloc
ties. The second is the dispersive~or fluctuational! mecha-
nism controlled by two conditions:~a! ^Dv2&.0, therefore

FIG. 6. The same data as in Fig. 5, but plotted against time. The app
mation was performed by Eq.~20!.
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the peak in the velocity distribution spreads with time;~b!
the absolute value of velocity cannot be negative, theref
the peak spread cannot be symmetrical, but its predomin
direction is to the side of higher velocities, as a result,
simple normal distribution is replaced by distribution~16!.
Moreover, it follows from both analytic and numerical ca
culations that fluctuations and the mean increase in the
ticle velocity are larger in the case of regular scatterer bou
ary oscillations, which leads to a larger velocity growt
Thus, the mechanism due to correlations between seque
changes in the velocity has been suggested.

It is quite clear that the reasoning used in deriving t
particle velocity as a function of the number of scatteri
events and time can be directly translated into another t
of billiard in which a distribution of anglea ~between the
normal to the surface at the impact point and particle vel
ity! is known. Therefore, the technique developed in o
work can be used in solving the problem of Fermi accele
tion in the general case.

The presence of a chaotic condition in a system c
change its statistical properties. A recent publication
Tsang and Ngai10 considered a billiard in an area defined b
a rectangle whose corners were replaced by quarter-circle
radiusR ~smoothed corners! and one side oscillated period
cally. A particle travels within this area and collides with th
boundaries. Each collision with the boundary is not perfec
elastic, and the particle loses a fraction of its energy prop
tional to a constantd (d!1). This model is similar to Ul-
am’s model, but the presence of smoothed corners introdu
random elements to the particle dynamics. Tsang and Ng10

investigated relaxation of a system to equilibrium. A simil
investigation was performed earlier by Tsang a
Lieberman25 on the basis of Ulam’s model. It was shown th
the functionF(t)5E(t)2E(`), which is the deviation of
the mean energy from the equilibrium value, drops expon
tially, F(t)}exp(2t/t), which is quite natural of most physi
cal systems. The investigation of this parameter in the
liard discussed in Ref. 10 revealed that its relaxation
equilibrium in this case is slower,F(t)}exp@2(t/t)b#, where
b,1 and drops withR. Given the results of this paper, w
can understand the cause of the slower system relaxatio
fact, the random element in the system becomes m
important at larger radii of circles at the corners, which lea
to acceleration of particles. Therefore the system relaxa
to its equilibrium, associated with the particle ener
dissipation in the system, becomes slower. The approa
developed in the reported work create preconditions
determination ofb, hence of the relaxation rate to equilib
rium in a system where the chaotic dynamics
dominant.

Thus, on the basis of our investigations, we can put fo
an important hypothesis: a random element in a billiard w
a fixed boundary is a sufficient condition for the Fermi a
celeration in the system when a boundary perturbation
introduced.
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