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The paper is devoted to the problem of Fermi acceleration in Lorentz-type dispersing billiards
whose boundaries depend on time in a certain way. Two cases of boundary oscillations

are considered: the stochastic case, when a boundary changes following a random function, and a
regular case with a boundary varied according to a harmonic law. Analytic calculations

show that the Fermi acceleration takes place in such systems. The first and second moments of
the velocity increment of a billiard particle, alongside the mean velocity in a particle

ensemble as a function of time and number of collisions, have been investigated. Velocity
distributions of particles have been obtained. Analytic and numerical calculations have been
compared. ©1999 American Institute of PhysidsS1063-776(99)02111-3

1. INTRODUCTION dependence of the wall velocity, stochastic layers are sepa-

rated by invariant curves. These curves set limits on the en-

The termbilliard is applied to a dynamic system in grgy acquired by the particle. If this dependence is not suf-
which a point-like particle moves within a certain regiQn ficiently smooth, there are no invariant curves, and the
with a piecewise smooth boundas@) under the condition o ticle velocity can increase without bound. Later investi-

that the law of equality between the angles of incidence an%ations(see Refs. 16,19-21 and references therefrvari-
reflection applies. Depending on the billiard boundary con- .

. . . o ous versions of Ulam’s model revealed some relation be-
figuration, the motion of the particléilliard ball) can be

. o . . . tween the law governing wall oscillationgi.e., the
regular, ergodic, or mixing. The termdispersing billiard th f1h Il velocit functi fii d th
applies to a system whose boundagy is convex inside the smoothness ot the wafl Veloctly as a function of ime and the

regionQ. It is well known that such a billiard has a mixing degree of its randomnesand the presence of the Fermi

property, and the billiard ball dynamics in this case is cha-2cceleration.

oftic. In chaotic billiards, even if the boundary velocity is a

If the setdQ is constant with time, the system is called a Smooth function of time, the incidence angle of a particle can
billiard with a constant (fixed) boundary, but if 9Q be treated as a random parameter. Consequently, the normal
=9Q(t), this is a billiard with a perturbetmoving bound-  velocity component at the collision poitthis is the compo-
ary. Billiards with fixed boundaries have been well studiednent that changes as a result of scattering, whereas the tan-
(see Refs. 1-7 and references thereft the same time, gential component is constaris a stochastic value. Obvi-
there have been very few publications devoted to billiardously, changes in the velocity are also random in this case.
with perturbed boundariés!! although their studies are of The paper is devoted to the problem of Fermi accelera-
great interest from the viewpoints of both solutions of someton treated on the example of a generalized billiard, namely,
problems of statistical mechanics and the feasibility of arg |grentz gas with an open horizon and a perturbed bound-
unbounded increase in a ball velocity, the latter problemyry e focus attention on two different cases of stochastic
originating from that of the so-called Fermi accglgrgﬂ%f'ﬁ' and regular(harmoni¢ oscillations of the boundary. Note

Fermi acceleration is the phenomenon of infinite accel'that in all publications on this topic of which we are aware,

ration of particl f vari nature owin heir rin . . . . o
eratio orpa tCE’TS ofvarious natu € owing o .t eir scattering, problem of Fermi acceleration was investigated in inte-
by moving massive scatterers. This mechanism of accelera-

tion was first suggested by Ferthto account for the origin grable or almost in_tegr.able gystgms. In view of Fh.is’ our pa-
of cosmic rays of very high energies. Later various modelde" presents the fllrst investigation of chaotic billiards with
were suggestetf, 2 which described this phenomenon with perturbed boundaries. . _ _

a lesser or greater degree of success. For example,XJlam  T"€ paper comprises three main sections. The first of
demonstrated that, if a particle moves between an oscillating'€M is devoted to the basic concepts and derivation of maps
and a fixed wall, and the oscillation phase of the former athat describe the dynamics of a billiard. The second de-
the moment of collision is a random value, the particle carscribes the analytic and numerical study of the feasibility of
acquire an infinitely high velocity. A more detailed investi- Fermi acceleration. The third presents numerical calculations
gation of Ulam’s model was conducted by Lieberman andof the particle velocity as a function of time and number of
Lichtenberg'® who showed that, in the case of a smooth timescattering events, and compares them to analytic results.
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2.1. Lorentz gas with a fixed boundary

It is known that one can select as canonical variables for
billiards with unperturbed boundaries the azimuthal angle
¢ and incidence angle between the interior normal to the
surface and particle velocity before the collision. Let us in-
troduce the reflection angle* between the exterior normal
and velocity after the collisiorfFig. 1). It is obvious that
¢ e[0,27], and the angles and a* vary over the interval
[—m/2,712]. In order to describe the dynamics of an unper-
turbed billiard, one has to calculate a mapping, (¢,)

— (ap+1,®ns 1) Which transforms the variables(¢) at the
moment before thath collision with ¢Q to their values at

FIG. 1. Configuration of Lorentz gas model. The scattefersles of radius

R) are located at sites of a periodic lattice with peréod the moment before theﬁ& 1).th CQ||iSi0n- It clearly follows
from geometrical consideratiorifig. 1) that
¢n+a:+77=d’n+l+an+1- (1)
2. LORENTZ GAS Moreover,a} = — a, since these angles are measured in op-

hi on is d dto th . d deri posite directions.
This section is devoted to the main concepts and deriva- | ot 5 introduce a reference frame with its origin at the

tion of mappings that determine the dynamics of & WO~ enter of 4 circle on which the latest scattering event has

d|menS|or1aI Lorentz gas. ) ) , taken place and determine the equation of the straight line
Consider a plane argawith a piecewise smooth bound- along which the patrticle travels after the collision. Then one

. . oy 4 .
ary JQ. Tge d|sp(_ersmg_b|ll|arP is a system composed Of .o, easily calculate the distance at which the particle passes
neutral JQ;" and dispersingiQ;” (i.e., convex in the region 5 qiher center at a distance pfcells along the horizontal
Q) sections of the boundaiQ. One representative of such .« andq cell along the vertical axis:

billiards is a system defined in an unbounded donfiaiand
composed of a set of round infinitely heavy scatteBerwith ~ dny1=a[psin(¢,+ajy) —qcog ¢, +ay)]—Rsinay . (2)
boundaries)Q; and of radiiR located at sites of an infinite
periodic lattice with perioda (Fig. 1. Given thatB; are
fixed, the billiard in the regioQ=D\U;_,B; is called a
Lorentz gas. A particle moves among the scatterers and r
flects from them in accordance with the mirror reflection
law. Such a billiard has been studied in detail in the case o}(

aQ?ﬁonstE§ee ;qufzs'. L3, 4,f6ﬂ<’;1nd re.ferences t:le)relnf h which the conditiorld,,;|<R is satisfied. After calculating
e ratio @/R)® is one of the main parameters of the the impact parameted,,,;, one can easily calculate the

Lorentz gas. Depending on this parameter, we distinguis}a . n . )
_ X . ngle at which the collision with the next scatterer will take
Lorentz gases with a bounded horizigfa/R)?< 4], with an pla%e' i slon wi X w

open horizor[4< (a/R)?<8], and with an infinite horizon
[(a/R)?>8]. In the first case, the particle motion is limited __y Onyg
to one lattice cell, in the second and third cases it can travel ~®*n+1=SIN = —p—
throughout the entire space. In the case of an infinite horizon _ . . )
statistical properties of a billiard change because of higheThe_ Jacobian of the resulting mapping defined by Egjs-
probabilities of long free patH&"?2-24whereas in Lorentz (3 1S

gases Wi'_ch bounded and open hori_zons _correlations decay (¢, . 1,ns1) cosa,

exponentially. The mean free path is definedl asrA/P, FONCA) =
whereA is the area of a billiard where a particle can go and nen
P is the scatterer perimeter. For a system with an open horiThus, the mapping preserves the phase volumexdadd.
zonl=(a?— wR?)/2R, and for a billiard with an infinite ho- Hence follows, in particular, that if the billiard is ergodic, the

The parametep is assumed to be positive if the particle
moves on the right of the center and negative if the particle
moves on the left. Accordinglyg is positive if the particle
fhoves upwards and negative if it moves downwards. The
aluesp andq are determined using the scattering condition,
e., these are integers with the smallest absolute values at

3

 CcoSapn. g

rizon | has no upper bound. distribution with respect tay, is described by the formula
Suppose that the radii of scatterdsin a Lorentz gas 1
are perturbed in accordance with a certain law, i.e., all p (a)= 5 cosa, (4)

boundaries?)Q; perform small oscillations in the normal di-

rection. In this paper we consider two different cases: periwhere 1/2 is the normalization factor.

odic (and phase-synchronizedbscillations, and random

changes in scatterer radii. The first case corresponds to the

situation when all boundaries oscillate in phase following the ) . )

same law. The second case describes oscillations of mar%yz' Lorentz gas with oscillating scatterer boundaries

scatterer boundaries with the initial phases distributed ran- Now we can easily obtain a mapping that describes the
domly. dynamics of a billiard with a perturbed boundary under the
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assumption that the boundary oscillation amplitude is muclity changes in the process of scattering, and the tangential
smaller than its radius, i.e., we can neglect geometricatomponent remains unchanged, we obtain a mapping for the
changes in its boundaries. absolute value of particle velocity after the collision:

Suppose that the dispersing compong@t” of bound-
ary dQ contracts and expand§ig. 1), so that its radius
varies following the law Hereu,=ug coswt, is the boundary velocity at the moment

R=R()=R+r(t), where mai(t)|<R. of fthe_nth scattering eve_nt. '_I'h_e relation between the angles

of incidence and reflection, in its turn, can be expressed as

Then the boundary velocity is a function of time(t)

=r(t). Further, we assume for definiteness thaft) af=—sin"!
=Ug cos(wt), whereug=wrq. In this case, in addition to

parametersy and ¢, we have to introduce another two vari- Now, by calculating the separation between sequential scat-
ables, namely, the particle velocity and collision timet.  tering events, one can easily obtain a mapping for the colli-
Given that only the normakadia) component of the veloc- sion timet,:

Vns1=VVa—4UnV, COSay+4U2, (5)

Vin

sina,

Vin+1

|

n+1

thr1=tht )
Vin+1

In+1= V[R(COS¢n 11— COS¢y) —pal*+[R(siN by 11— Sin ) —qal’. (6)

Herel,, is the free path. Under the assumption th&R, the  point of the second collision. In the general case, they are not
mappings for variablep and impact parameted are the equal(Fig. 2). Let u(t) be the boundary velocity. The fol-

same as for the unperturbed billigigs. (1) and(2)]. lowing relation should, obviously, hold:
(u()=0, @)
3. FERMI ACCELERATION which means that the boundary remains, on average, at its
place.

As a result of impacts with a perturbed boundary, the
billiard ball velocity always changes. As earlier research ha%’he

11 H H
shown,” these changes in the velocity are random. Therebonstant, whereas the change in the normal component can

forg, let us cons@er an ensemble of part|c!es and calcglatge easily calculated in the reference frame connected to the
their velocity distribution and average velocity as a functlonWaII Thus. we can write for the first collision

of timet and number of collisiona (the number of collisions

and time are not directly proportional because a faster par- Vo= —Vg,+2U(t,) = — Vv COSag+ 2u(t,),
ticle undergoes more impacts during a time interval than a -
slower ong. In this section, we will first consider the issue of Vio~
the mean change in the velocity in billiards with arbitrary V1=\/VS—4V31U(tn)+4U2(tn)-

shapes and perturbed boundaries, then we will discuss the

problem of Fermi acceleration in a Lorentz gas with ran-It is clear that, if only one collision is considerevig)

domly and regularly oscillating scatterers. =0 and(Av]y)=0 for a billiard of an arbitrary configura-
tion. Moreover, changes in the velocity are associated only

Consider a single collision between a particle and a wall.
tangential velocity component in this case is, obviously,

Vgl:VO Sinao, (8)

3.1. Average change in the velocity in the general case

Consider two sequential collisions of a ball hitting
against a wall in a billiard of an arbitrary configurati@fig.
2). Denote byag the particle incidence angle in the first
collision, and bya; this angle in the second collisigthey
are introduced as in Sec. 2.Further, denote by, andv;
the absolute values of the ball velocity before the first and
second collisions, respectively. The velocity components are
labeled by the following indices: the superscriptsand n
denote the tangential and normal velocity components, re-
spectively, the first subscript is the velocity index, the second
is set to unity if the velocity component is considered before
the collision and to zero after the collision. Thugg denotes
the tangential component of velocity, at the point of the
first collision, andvi, is the tangential component at the FIG. 2. Billiard of an arbitrary configuration.
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with the normal component since the tangential componeras a function of the numberof scattering events and tinte
is unchanged after the reflection. Consequently, the averada the case of a low particle velocity,<ug, the major con-
growth in the velocity depends on the normal velocity com-tribution to velocity given by Eq(5) is due to the last term
ponent in the next collision. In the general case, howeverpn the right-hand side, hence

one can consider only the average velocity component, i.e.,

(vip=(v,cosa;)

Var1~2u(ty)].

If boundary oscillations are determined by E#1),

=(\V2—4vu(t)cosag+4u?(t,)cosa;),  (9) !
ing i (Vo) =2(u(ty) =4
where averaging is performed over angles and «; and n+1 nIn=a
time t. . . '
It seems appropriate to illustrate E69) on two ex- Thus, even after the first collision, the average velocity be-
amples. comes larger thang.

Now let us calculate the change in the velocity at

Ulam's model!*15-21 Two parallel heavy walls are : . ) .
placed at distance between them, and a ball moves betweenv>u°' By expandlng the ”ght'h?‘”d side of E@) N pow- ]
ers ofu/v, we obtain an expression for the velocity change:

these walls. One wall oscillates periodically with amplitude
S such thatL> 6. The specific time dependence of these uﬁ
oscillations is unimportant for our analysis, the only impor- AVp=Vpi1—Vp=—2U, COSan+2V—
tant point is that the wall motion should satisfy conditi@. "

Since the tangential velocity component in this model is con- 2 up)3

stant,v"=const, the velocity and incidence angle are related XSIn ap +vinO v, |’ (12)

by the formula i ) )
whereu, is the scatterer boundary velocity during thth

v sinae=v"=const. (100 collision.

The normal velocity component, in its turn, has the same USing Eq.(4) and the uniformity of the phase distribu-
absolute value before the first collisionf},, and before the tion at the moment of collision, we obtaifAvy,) and

2\.
secondy!,. Consequently, (Avp)9):
N\ _/yN\_/_\,N —\n M 4
(Vi =(Vip=(=Vbi+2u(ty))=Vpy. ps=(Avp) ===, of=((Avy)?)=Zu5. (13)
Thus, there is no particle acceleration on average in this
model. Here we have introduced for simplicity of further calcula-

Lorentz gas. Owing to the strong mixing in this model, tions the parametevl sEuS/3, where subscrips denotes the
we can assume that angleg and «; are mutually indepen- stochastic effect. After averaging, only the second term on

dent, hence the right of Eq.(12) contributes to the velocity increase, and
(V1) =(cosavy) — (cosay), (V) in calculations of the variance the first term is sufficient.
w- ¥1V1/ag,ap 1 1 a;\V1/ag t- If the numbem of scattering events is sufficiently large,

Therefore, fluctuations in the velocitfincrease and de- We can replace the first equation (b3) with a differential
creasg due to collisions are associated with changes in it€quation
absolute value, but not in its normal component, as was in avn) M
. . S
the previous case. As will be shown below, the vajug) =
increases with, therefore Fermi acceleration is feasible in
the Lorentz gas. Its solution with the initial conditionv(0)=v yields the
This conclusion can probably be extended to other sysmost probable velocity as a function of the number of colli-
tems in which the incidence angle and velocity are not di-sions:
rectly related by Eq(10), as in Ulam’s model. An interme-

an  v(n) (14

— 2
diate configuration between Ulam’s model and a scattering v(n)=v2Mgn+vg. (15
billiard is the “stadium-shaped™ billiard, in which the feasi- gjnce the particle velocity is expressed as a sum of indepen-
bility of Fermi acceleration was studied numericdfly. dent random quantitie&v,, with known mean and variance,

it follows from Lyapunov’s central limit theorem that the
distribution function of the random valuev,=v,
+32,Av; tends to a normal distribution with mear(n)

Let the boundary velocity of a scatterer at which tile ~ and variancena. Thus, the velocity distribution has the
collision takes place be shape of a spreading Gaussian. The position of the distribu-
tion peak is at the most probable velocityn), proportional
to the square root af.
whereug is the boundary velocity amplitude, afd¢,} is a This reasoning applies only to the case of a sufficiently
set of uncorrelated random values uniformly distributed oveihigh particle velocityy>ug. In order to describe the distri-
the interval[ 0,27). Let us calculate the velocity distribution bution at lower velocities, let us introduce an additional con-
function and the average velocity in an ensemble of particleslition, namely, that there is no flow of particles to the region

3.2. Stochastically perturbed scatterer boundary

Up(t)=Uuq cose,, (11
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of negative velocities: (dp/dv),-o=0. It is well known M|
that the Gaussian distribution that satisfies this condition has 1.2,,5
the form

1.0u}

)= 1 . _[v—v(n)]2 )
pLv,  gey2mn X 202n 0'81‘0_

2 ’-9.— -
F{ [v+v(n)]2) 0‘6%. S B4 1
+exp — ]
20—Sn 4 T,- ——— -}' ............................... -
Ml

(16)

0.4113 o {I \{‘%
This allows us to calculate the mean velocity in the particle 0-2"3
ensemble as a function of the number of scattering events:

A i ) ]

5 5 10 15 20 25 v
2n v4(n) v(n)
V(n)=os\/—exp — o 2 +v(n)® ) FIG. 3. ParameteM=v(Av) as a function of particle velocity. Curves
m 205” ‘Ts\/ﬁ and?2 are calculated by the Lorentz gas model for the cases of random and
17 regular boundary oscillations, respectively. CuB/& calculated using the

X > . . simplified mapping22). The dashed line showd in the Lorentz gas in the
where ®(x) = (Z/J;)foeXp(_X )dx is the error function. case of stochastic boundary oscillations calculated by(E2). Results are
HereafterV denotes the mean velocity in the particle en-obtained auy=0.01,a=1, andR=0.4.

semble. By substituting all coefficients and expanding the

expression for the velocity, we obtain . o ) .
Thus, the system under investigation gives rise to the

1 Fermi acceleration, with the particle velocity increasing as a
ﬁ ' (18) linear function of time.

where the constant  C=2[ osexp(~Ms/a)/\/m 3.3. Periodically perturbed scatterer boundaries
+® (VM o) VM]~1.143)5. )
Thus, Eqs(16) and(18) determine the velocity distribu- Suppose that all scatterer boundaries contract and ex-

tion and the mean velocity in the ensemble as functions opand following a certain periodic law with a constant initial
the number of scattering events. phase. Then, during one half of the period, the particle ve-

To calculate the mean velocity versus time we use thdocity should increase as a result of collisions and decrease
Fokker—Planck equation: during the other half. If the particle velocity is high enough,
the time 7, between scattering events is longer than the pe-
ap(v,t) J 52 riod T of scatterer oscillations. This leads to correlations in
Framiaiewl VIO E[BP(V,U], particle velocity variations, so the sequential increments in
the velocity defined by Eq12) can no longer be treated as
where the factoré andB are given by the expressions independent.
) 5 This section presents numerical calculations of the ve-
_ A_V _ % B= AL o5V locity variance and its average increase, alongside the decay
T\ o7 I |- rate of the correlation functioR(m)=(Av,Av,.m). They

V(n)=C\/ﬁ+O<

-
indicate, in particular, that correlations can lead to larger first
and second moments of velocity distributions. The calcula-
tions were performed on the basis of the Lorentz gas model

MWwith the following parameters: the scatterer radiis 0.4;

ap(v,t) M, @ 05 2 the separation between their centarsl_[thus, the basic

=———p(v,t) + = — —[vp(v,1)]. (19 model parametera(R)%=6.25]; the amplitude of the scat-
I av 2 1 gv? terer surface velocityuy=0.01; the oscillation frequency

Here the mean time between collisions /v, | is the mean
free path, and\v andAv? are defined by Eq13). By sub-
stituting the resulting coefficients in the equation, we obtai

ot

If parametersM ¢ and o5 are determined in accordance with “~ 1. _ _ _
Eq. (13), the solution of this equation in the limit of high It follows from the analysis of the previous subsection

velocities much larger than the initial value, i.e., after a suf-hat at high particle velocitiesAv)~1A. Therefore, the
ficiently long time interval, tends to variable most convenient for the analysis and graphic repre-

sentation isM=(Av)v. Figure 3 showaM plotted against
w1 1 p( v the particle velocity in the case of stochadfitirve 1) and
p(v,t)= ———exp — 575 |- periodic(curve2) boundary oscillations. One can see that, in
2tAmy 2A the case of stochastic oscillations, the variaidlg~u3/3 co-
whereA=M,/I|. The latter expression yields the mean par-incides with to the result of the previous subsection. In the
ticle velocity: case of regular oscillation$/, first increases, and then most
likely tends to a constanl"®=(1.15+0.10u3 at v=15,
which corresponds in this specific billiard configuration to
n=150 particle collisions with the boundary during one os-

2
Lu;

Ms
V(t): I_t+V0:
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cillation period on average. In addition, it is clear that the w2

particle acceleration in the case of regular boundary oscilla-  R(N)=(AvV; AV, )= U%j(‘?oswtm COSwtmin),

tions is a factor of three to four higher than in the case of

stochastic oscillations. which takes into account, as follows from E), that
For the analysis of velocity changes in chaotic billiards{CoSa,)=m/4. By setting the oscillation frequency to unity

with periodically oscillating boundaries, the following ap- and introducing the notatio®,=={"_; 7., where r=t;

proach can be suggested. Consider an approximate mappingti-1, We obtain

for velocity (12). Since correlations between parametefs

decay exponentiallyas follows from the billiard configura-

tion), the formulas can be averaged overusing Eq.(4).  The variableS, can be expressed as

Then

(cost, costy,, n)=(cost, cogt,+S,)).

n
T u3 coswt, Sn—zl (AL,
— Euo coswt,+ —. (21 _ o _
n whereAl; is the deviation from the mean free path on itte
During the oscillation period, the largest contribution to collision. SinceS, is the sum of independent random quan-
changes in the velocity is due to the first term on the right.tities, its distribution at larga tends to the normal distribu-
Therefore, it is sufficient in the first approximation to take tion with meann| and varianceo{ , whereo? is the mean
into account only the changes in the velocity due to the firsfree path variance. By expanding the cosine of the sum and
term, and the second can be neglected. On the other han@veraging oveiS,, we obtain the following expression for
correlational corrections to the second term generate terms #te correlation function of velocity increments:
higher orders than that of its average. Therefore, correlation 2 n
effects in the second term can be neglected. For this reason, R(n)= gug cog wna-)ex;{ - N)’
the two values related to the first and second terms can be
calculated independently: where o is the frequency of scatterer oscillations,
N=v?/(w?c?). Thus, correlations between sequential
(Av)=(Av)i+(Av)y, changes in the particle velocity are the stronger, the higher
Where<v>,|=u§/(3v), which coincides withus in the sto-  the velocity, and their “half-life”N, i.e., the number of col-
chastic casé¢Eq. (13)], and(Av), is the correction due to lisions after which correlations drop by facter increases
correlations. Discarding the second term on the right of EqProportionally tov?. Note that the number of collisions over

(21), we have the following mapping for calculatifd.v), : one period is proportional te. Thus, in order to estimate
correctly the velocity variance, one has to average over the

lni1o 22 larger number of oscillation periods, the higher the particle
Vi1 velocity. The issue of how this can be done, however, has
. ) ) remained unresolved.

Herey=—aruo/2, and the collision phasé,= wt, is substi- In order to estimate the variance in the first approxima-
tuted for time. This mapping is exactly equivalent to Ulam's ;,n, ‘jet ys consider the velocity increment after two sequen-
well-known mapping:'~*!the only difference being that in o) coflisions with the boundary. In this analysis, we assume
this case the free patly is a random parameter distributed w5 correlations among three and more increments are neg-
over a certain interval. ligible. In the limit of a high velocity of a billiard particle,

Let us analyze numerically this mapping at the samey cqrelator of sequential velocity increments can be esti-
values ofuy and w as those selected in our analysis of the i by the formula

Lorentz gas. Suppose that the free pla‘tﬂnazs a normal dis- )
tribution with meanl =0.62 and variancer; =0.657. This P
corresponds to the variance and mean flree path calculated <AV”AV”+1>:UOT<COS? wt(1-0(7%)))
numerically atR=0.4 anda=1 (see the previous subsec-
tion). Figure 3 showiAv),v+ué/3 (curve 3) derived from ué
mapping(22). One can see in the graph that the first moment ﬁ '
of the velocity distribution defined by this mapping becomes
positive, but it is still smaller than the observed velocity From this expression and E(L3), we derive
incrgase in the !_orentz gas. Nonetheless, this mapping is i (Avp+Avn)?) (4 w2
easier for analysis than EQ1). or= 5 ~\3 + 5
Now let us estimate the variance and decay rate of cor-
relations in the velocity change. Suppose that the particle Figure 4 shows numerical and analytic estimates of the
velocity is so high that its change afteiscattering events is velocity increment variance in the stochastiashed ling
negligible. It is clear that, in order to satisfy this condition, and regular(solid lineg cases. In the case of stochastic os-
one can choose andug in a proper manner. Let us calculate cillations, the numerical and analy{iEq. (13)] estimates are
correlations between velocity incrememiy,,, and Av,, identical, so the graph shows only numerical calculations of
[Eq.(12)] for n—cc. Taking into account in the first approxi- og. Regular oscillations are characterized in this graph by
mation only the first terms on the right of Ed.2), we obtain  the straight line defined by Eq24) and the broken line

(Av),=

(23

Vn+1=VptyCosty, Onp1=0ht

277'2
:U0§+O

u3. (24)
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FIG. 4. Variance versus particle velocity in the Lorentz gas in the cases of [
stochastic(dashed ling and regular(solid lineg oscillations. The straight 1 . . ,
line shows the theoretical estimate of the variance in the regular case by Eq. * — * 3 108 - 5 103
(24). The calculations were performedaj=0.01,a=1, andR=0.4. 110 ) )

FIG. 5. Mean particle velocities as functions of the number of scattering
events in the Lorentz gasurvesl and?2) and their approximations by Eq.
(18) (curves3 and4). The dashed lines correspond to stochastic boundary

calculated numerically. In order to take into account correlaoscillations, the solid lines correspond _to rggular _oscil_lations. The a_lvere_lging
tions between velocity increments, we calculated in the re(‘:]ut\:vas performed over 100 process reahza}nons with different velocity direc-
] ’ ions selected at random. The calculation were performed,at0.01,

lar case the effective varlan(sz=<AV2)/Nmax, whereAV a=1, andR=0.4.
is the total velocity increment aftéd,,,, collisions. Given
Eq. (23) describing the correlation function decay, we
equatedN . to 10/2/(w2(r|2), which is a factor of ten higher u,=ugcose,, where ¢, is a random parameter uniformly
than the characteristic correlation decoupling number. As iglistributed over the intervdl0,27), and in the second case
shown by the graphs, the varian@éin the stochastic case is by the formulau,=ug coswt,, wheret, is the moment of
constant, whereas in the regular Caeé)(it grows with the collision between the particle and boundary. For each case
velocity. In addition, the variance in the regular case deter100 realizations of billiard dynamics were investigated. The
mined by Eq.(24) is slightly overestimated. averaged velocity as a function of the number of scattering

Thus, the numerical and analytic estimates given in thig€vents and time is plotted in Figs. 5 and 6, respectively. In
section indicate that particle acceleration should occur iP0th graphs, the solid lines plot the data for the regular case,
chaotic billiards with periodically oscillating boundaries. We @nd the dashed line corresponds to the case of random oscil-
can most likely say that deterministic chaoticity is a suffi-1ations. ,
cient condition for Fermi acceleration. Moreover, periodic ~ F19ure 5 shows the averaged velocity of an ensemble of

oscillations of billiard boundaries lead to a higher particlepartICIeS Versus 'the qumberqf scattering events over the
acceleration. range of 5 10 iterations. It is clear that both curves are

accurately approximated by the square-root funcfit®). In
3.4. Numerical results the case of stochastic oscillations, parametdrs and o
were derived from Eq(13), and in the regular case the lim-

This section presents numerically calculated particle ve-" I q derived f cal cal
locity as a function of the number of scattering events anqt'n,g valuesM, and g, were derived from numerical calcu-
ations described in the previous subsection.

time in comparison with the analytic estimates given above. T fth locit titeia. 6) plot
The calculations were performed by the Lorentz gas model e curves of the mean velocity versus titg. 6) plo

with the following parameters: the amplitude of the scatter(atIhe data .averaged over lOQ re_al|zat|ons in_the stqchasﬂc
boundary oscillation velocityi,=0.01; the scatterer radius (dashed linesand regular(solid lineg cases. The particle

R=0.4: the distance between their centers 1: the fre- dynamics was simulated over a time interval[ 6f 3x 10°]

- . : time units, and some trajectories of “fast” particles covered
qguency of boundary oscillatione=1; the initial velocity ' J P

: up to 3x 10° iterations. The mean particle velocity was ap-
vo=1. Thus, the mean free path calculated analytically for b P y P

: . roximated using Eq20). The parameteM ; was calculated
these parameterss=0.6216815. The numerical calculations proxi using E420) P s W !

fth f 6 di . in thi for stochastic oscillations by E413), and for regular oscil-
o _t € mean ree_pat[E_q. ( )_] and its variance in this Spe- | iong as a limit ofM, obtained in the previous subsection.
cific billiard configuration yieldl

2 =0.62163-0.00003 and The curves show that the growth in the particle velocity is
o7=0.657+0.001.

: ] o ] o approximately linear, and the approximation of the average
The difference in realizations was in the initial values of

‘ . velocity by Eq.(20) is in reasonable agreement with com-
a and ¢, which were selected at random. Two different puter simulations.

cases were investigated: stochastic oscillations of scatterer

boundaries with initial phases distributed uniformly and

regular oscillations of boundaries. In both cases, the billiard" CONCLUSIONS

ball (particley dynamics was determined by the mapping de-  Billiards are fairly convenient models of a set of physi-
rived in Secs. 2.1 and 2.2. The scatterer boundary oscillational systems. For example, particle trajectories in billiards of
velocity in the first case was defined by the formulaspecific configurations can be used in modeling many dy-



JETP 89 (5), November 1999 Loskutov et al. 973

the peak in the velocity distribution spreads with tintke)
the absolute value of velocity cannot be negative, therefore

330 the peak spread cannot be symmetrical, but its predominant
direction is to the side of higher velocities, as a result, the
250 simple normal distribution is replaced by distributi¢h6).
Moreover, it follows from both analytic and numerical cal-
200 culations that fluctuations and the mean increase in the par-
ticle velocity are larger in the case of regular scatterer bound-
150 ary oscillations, which leads to a larger velocity growth.
Thus, the mechanism due to correlations between sequential
100 changes in the velocity has been suggested.
It is quite clear that the reasoning used in deriving the
50 particle velocity as a function of the number of scattering
events and time can be directly translated into another type
of billiard in which a distribution of anglex (between the

normal to the surface at the impact point and particle veloc-
ity) is known. Therefore, the technique developed in our
FIG. 6. The same data as in Fig. 5, but plotted against time. The approxiwork can be used in solving the problem of Fermi accelera-
mation was performed by E420). tion in the general case.

The presence of a chaotic condition in a system can

. change its statistical properties. A recent publication by
namical systems. Moreover, most approaches to thef_ d Na&? idered a billiard i defined b
problems of mixing in many-body systems originate from sang and Ngar considered a bifiard in an area de m_e y
billiard-like problems. A natural generalization of a billiard a rgctangle whose corners were replgced by.quarter-m.rcl(-es of
system is a billiard whose boundary is not fixed, but varied@diusR (smoothed corneysand one side oscillated periodi-
following a certain law. This is a relatively new field of cally. A particle travels within this area and collides with the
research, which opens new prospects in studies of prob|ent§)l.lndaries. Each collision with the boundary is not perfectly
that have been known for a long time, but have been poorlglastic, and the particle loses a fraction of its energy propor-
investigated. For example, the problem of particle dynamicsional to a constant (6<1). This model is similar to Ul-
in a billiard whose boundary changes with time has a direcam’s model, but the presence of smoothed corners introduces
physical application as a model of nonequilibrium statisticalrandom elements to the particle dynamics. Tsang and*Ngai
mechanics. As follows from the existing literature, the dy-investigated relaxation of a system to equilibrium. A similar
namical properties of a billiard with perturbed boundaries argnvestigation was performed earlier by Tsang and
important: if its o.Iyr'1a.mics is chqotic, boundary pertu_rb""t,iOnsl_iebermaﬁ5 on the basis of Ulam’s model. It was shown that
can Iead_ tp an infinite growth in t_he partlcle_ velocity, I8 the functiond (t) = E(t) — E(=), which is the deviation of
such a billiard demonstrates Fermi acceleration. o

In the present article, we have studied the problem o}_he mean energy from th? eq_whbvum value, drops expor?en-
Fermi acceleration in dynamical systems generated by twot—'a"y’ <b(t)ocexp(—t/r), Wh'Ch_'S quite r]atural of mo;t phyS|-.
dimensional dispersing billiards with perturbed boundariesC@ Systems. The investigation of this parameter in the bil-
A billiard with a boundary like that of the Lorentz gas liard discussed in Ref. 10 revealed that its relaxation to
oscillating in accordance with a certain law has been invesequilibrium in this case is slowet (t)<exd —(t/7)"], where
tigated. It is well known that the conventional Lorentz gas#<1 and drops wittR. Given the results of this paper, we
(i.e., that with an unperturbed boundphas clearly demon- can understand the cause of the slower system relaxation. In
strated chaotic propertieemixing, decay of correlations, fact, the random element in the system becomes more
etc). Perturbation of boundaries in such a billiard leads toimportant at larger radii of circles at the corners, which leads
the Fermi acceleration. This model has been studied in twgy acceleration of particles. Therefore the system relaxation
versions, namely, those with stochastically and regularly ostg jts equilibrium, associated with the particle energy
cillating scatterer boundaries. It has turned out that the aGgissipation in the system, becomes slower. The approaches
celeration is higher in the case of periodical boundarydeveloped in the reported work create preconditions for

oscillations. o . o
. . . . . determination of3, hence of the relaxation rate to equilib-
We can identify two basic acceleration mechanisms,. & q

which have been discovered in deriving the particle velocit lum in a system where the chaotic dynamics Iis

distribution as a function of the number of scattering eventgom'nam' ) ) o
in the case of stochastic oscillatiofSec. 3.3. The first is Thus, on the basis of our investigations, we can put forth

the mechanism deriving from the conditigdv)>0 [Eq. &N important hypothesis: a random element in a billiard with
(13)], which drives all particles to the side of higher veloci- & fixed boundary is a sufficient condition for the Fermi ac-
ties. The second is the dispersi(@ fluctuational mecha- celeration in the system when a boundary perturbation is
nism controlled by two conditionga) (Av2)>0, therefore introduced.
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