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Abstract—The standard Melnikov method for analyzing the onset of chaos in the vicinity of a separatrix is
used to explore the possibility of suppression of chaos of dynamical systems of a certain class. Analytica
expressions are obtained for external perturbations that eliminate chaotic behavior. These results are supple-
mented with a numerical analysis of the Duffing—Holmes-oscillator and pendulum equations. © 2004 MAIK

“Nauka/lInterperiodica” .

1. INTRODUCTION

Intensive theoretical and experimental studies of
chaotic dynamical systems revealed their unexpected
and remarkable property: they are highly susceptible
and extremely sensitive to perturbations. This discov-
ery served asastarting point for finding ameansto con-
trol the behavior of chaotic systems, i.e., to change
from chaotic regimes to required regular oscillatory
regimes by means of relatively weak perturbations.

Suppression of unstable or chaotic behavior of
dynamical systemsisgenerally achieved viastimulated
excitation of stable (usualy periodic) oscillations by
means of multiplicative or additive perturbations. In
other words, an external perturbation is required to
change from a chaotic state of a system to a regular
regime. The statement of the problem is outwardly sim-
ple, but its solution is very difficult to find for particular
dynamical systems. Moreover, even though the prob-
lem has been analyzed in numerous studies, a system-
atic and rigorous theory of suppression of chaotic
behavior has been developed only for some common
families of dynamical systems (see [1, 2] and refer-
ences cited therein).

Chaotic behavior can be suppressed by two different
methods. In one of these, the state of a system is
changed from chaotic to regular by perturbation with-
out feedback. In other words, this method does not
make use of the current values of dynamic variables. In
the other method, the perturbation is adjusted in accor-
dance with the required values of dynamic variables,
i.e., feedback isan integral component of the dynamical
system. By convention, the former method is called
open-loop suppression (or control) of chaotic dynam-
ics. Thelatter method is called feedback control of cha-
otic systems. Both methods can be implemented either
parametrically or by direct forcing.

To the best of our knowledge, the first analyses of
suppression of chaotic dynamics of certain systems

were presented in [3, 4]. However, extensive research
along these lines was initiated by [5, 6], where it was
shown that relatively weak parametric perturbations
can be used to regularize a particular saddle orbit
embedded in a chaotic attractor. These and other results
stimulated studies of suppression of chaotic dynamics
and evoked great interest in control of unstable sys-
tems. A vast number of numerical and experimental
studies were focused on the possibility of suppression
of chaos and implementation of periodic or other
required dynamicsin various systems and maps (see|[1,
2, 7-10] and references therein).

The standard Melnikov method is an effective tool
used in analytical treatments of the problem of chaos
suppression [11]. It is based on comparison of the first-
order terms in the series expansions of the solution in
terms of a perturbation parameter on stable and unsta-
ble separatrices. In particular, the Melnikov method
was applied to explore the possibility of elimination of
chaotic dynamics of the Duffing—Holmes oscillator
[12-16] (seedso[17]). It was shown that asmall para-
metric perturbation of the system’s chaotic dynamics
suppresses chaos. Furthermore, the Melnikov method
was used in [18] to examine the effects of parametric
perturbations in amodel of the Josephson junction.

In this paper, the Melnikov method [11, 19] is
applied to find analytical expressions for parametric
perturbations that suppress chaotic and/or unstable
behavior of dissipative dynamica systems. The Duff-
ing—Holmes oscillator and pendulum are considered as
examples.

2. THE MELNIKOV METHOD

In this section, we briefly describe the Melhikov
analytical method for identifying homoclinic or hetero-
clinic chaos, relying on the original paper [11] (seeaso
[19-21]).
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Fig. 1. Split separatrix loops.

Consider asimple autonomous system with asingle
hyperbolic point X, subject to a periodic perturbation:

X = fo(x) +efy(x 1), (1)

where x = (X;, X,) and f; is a periodic function with
period T. Suppose that the unperturbed system (with
€ = 0) has asingle separatrix Xy(t) (see Fig. 1a):

lim xo(t) = Xo.

t - +oo0

The separatrix is split by the perturbation, i.e., has dis-
tinct incoming and outgoing branches. Three possibili-
tiesarise asaresult: the separatrices either do not inter-
sect (in which case one may enclose the other, see
Figs. 1b and 1c) or intersect at an infinite number of
homoclinic points. Chaotic dynamics are observed only
in the latter case (see Fig. 1d).

To find an intersection condition, one must use a
perturbation method to calculate the distance D(t, ty)
between the separatrices at an instant t,,. If the outgoing
separatrix encloses the incoming one, then D(t, ty) < 0.
If the incoming separatrix encloses the outgoing one,
then D(t, t;) > 0. Only if there existst, such that the sep-
aratrices intersect, then the sign of D(t, t;) alternates.

In the method substantiated in [11], the distance
D(t, ty) between the branches of a split separatrix is
determined by performing integration along unper-
turbed trajectories. The method is based on comparison
of the first-order terms in the series expansions of the
solution in terms of the perturbation parameter € on sta-
ble and unstable separatrices.

To calculate D(t, tp), it is sufficient to find the solu-

tions on the stable and unstable manifolds, x¢ and xY.
When € = 1, these solutions differ by the vector

r(t, to) = Xt to) —=x"(t, to) = X(t, to) — Xy (t, to).

The Melnikov distance is the projection of r on the
direction normal to the unperturbed separatrix X, at an
instant t.
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Omitting intermediate cal culations, we write out an
expression for D:

[

D(tto) = ~[ fo 0 fyct. @)

This function determines conditions for chaotic behav-
ior of the original system. Inthe domain wherethe sign
of D(t, to) aternates, the separatrices intersect and the
system exhibits chaotic dynamics.

3. ELIMINATION OF CHAQOTIC DYNAMICS
IN THE VICINITY OF A SEPARATRIX

We use the mathematical procedure described above
to explore the possibility of suppressing chaotic
dynamics for systems with separatrix loops described
by Eqg. (1), where

Fo(x) = (Tou(%), foa(X)),

f1(%) = (fu(X 1), f2(x 1)). ©)

For such asystem, the Melnikov function D(t, t,) can be
written as

00

D(t,to) = ~[ fo 0 fydt=1g(x,1)].

Suppose that the sign of D(t, t,) alternates, i.e., the sep-
aratrices intersect (see Fig. 1d). We seek a perturbation
*(w, t} that eliminates the intersection of the separa-
trices:

X = fo(x)+e[f(x t)+ f*(w,1)], 4%
where
f*(w,t) = (f7(wt), f5(w,t)).

We denote by [s;, S,] theinterval where the sign of D(t,
ty) aternates. Two cases can arise when the system is
perturbed by * (w, t):

D*(t, 1) > s ©®)
or

D*(t,ty) <s, (6)

where D*(t, t,) isthe Melnikov distance for system (4).
Suppose that (5) is satisfied. (A similar analysis can be

1 We tentatively call f* aregularizing perturbation.
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performed when inequality (6) holds.) Then,

ITg(x, )] + 1{g* (w, X, 1)] >s,. (7)
where

+o00

[[g*(w, X, 1)] = —J’fODf*dt.

By virtue of (7), there exists x such that

I[g(x )] +1[g* (w, x,t)] = s, +X = condt,
X,s, OR".

Hence,
I[g*(w, x,1)] = const—1[g(x, t)]. (8

On the other hand,

00

1g* (w.% 0] = ~[ foOT*dt. )

Suppose that the function f* (w, t) is absolutely integra-
ble over an infinite interval and Fourier transformable.
We define f* (w, t) as

f*(wt) = Re{A(t)e™™}

with A(t) = (A(t), A(t)), i.e., assume that the regulariz-
ing perturbations applied to both components of Eq. (4)
areidentical. Therefore,

00

—J’fOD{A(t)e_“”t} dt = const—I[g(x, t)].

The inverse Fourier transform yields

00

foOA(t) = I(I [g(x, 1)] —const)e“"dw.

Hence,

1

A = =T

00

x J’(I [g(x, 1)] —const) € “"dw.

The quantity A(t) can be interpreted as the amplitude of
aregularizing perturbation.
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Thus, dynamics of systems that can be represented
as (1), (3) areregularized by the perturbation

f* (0o, t)

00

= Re[mi(l[g(x, t)] —const)e dw}.

Next, we explore the possibility of suppressing
chaotic dynamics for systems governed by equations of
theform

X = P(x ),
y = Q(xy) +e[f(wt) +aF(x,y)],

where f(cw, t) isaperiodic perturbation; P(X, y), Q(X, y),
and F(x, y) are smooth functions; and a is a damping
parameter.

We consider the most common case when a single
hyperbolic point islocated at the origin (x =y = 0) and
P(x, y) = V. Let X(t) be the solution on the separatrix.
For perturbed system (10), the Melnikov distance can
be represented as

(10)

D(t, to) = _Iyo(t_to) (11)

x[f(w 1) +aF (X yo)ldt =1[g(w, a)],

where yy(t) = X, (t). Asin the case of Eq. (1), assume

that the sign of the Melnikov distance for system (10)
aternates, i.e., the separatricesintersect. We seek a per-
turbation f* (w, t) that eliminates chaotic dynamics:

| X=Y (12)
J = QU y) +elF(@ 1) +aF(x y) + (@ 1)].

Since system (10) is parameterized by o, chaos must be
suppressed for each particular value of the parameter.
Accordingly, we can write I[g(w)] instead of I[g(w, a)].

For system (12),

fe = Q% Y), A(t) = (0, A1)

foo =Y,
Therefore,

At) = m [ (1[g(e)] ~ const)é .

Thus, a regularizing perturbation for system (12)
can be represented as

f*(w,t)

00

_ e_i“’t _ i wt
= Re[yo(t_to):[(l[g(w)] const)e " dw|.

00
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Now, let us find a regularizing perturbation in the
case when the Menikov function D(t, t;) admits an
additive shift fromits critical value.

Again, we analyze the case when (5) is satisfied.
Suppose that o, corresponds to the critical value of the
Melnikov function,

le = 1[9(w, g =g )]-

Then, asubcritical Melnikov distance can be expressed
as

Iout - Ic_a1

where a 0 R* is a constant. Assuming that the system
perturbed by f* (w, t) exhibits regular behavior, we have

I"+ 1w + 1[g% ()] > s,. (13)

where

I[g* (w)] = —Iyo(t—to)f*(w, t)dt.
On the other hand, it is obvious that we can take any
I' afortiori greater than |
I'= I ,+a>s,. (14

Now, equating the left-hand sides of (13) and (14), we
obtain I[g* (w)] = 2a. Substituting

f*(w,t) = Re{ A(t)e"Y},
into the expression for 1[g* (w)], we find

00

- J’ eUA(N)Yo(t—ty)dt = 2a.

The inverse Fourier transform yields

00

A(t)Yo(t—t,) = —2a J’ e “'dw.
Hence,

Yo(1) Yo(t—1tp)

Thus, dynamics of systems that admit additive shift
from the critical value of the Melnikov function D(t, tg)
are regularized by the perturbation

_4mad(t)
Yo(t—to)

where §(t) isthe Dirac delta function.

f*(wt) = cos(wt), (15)
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In the general case, if fy = (foi(X), foe(X)), then we
obviously obtain

4mad(t)

PO = 0= )

cos(wt).

4. APPLICATION TO PHYSICAL SYSTEMS

Now, we use the approach presented above to ana-
lyze the Duffing—Holmes-oscillator and pendulum
equations. Transverse intersections of stable and unsta-
ble manifolds of these unperturbed systems giveriseto
homoclinic or heteroclinic orbits.

4.1. Duffing—Holmes Oscillator

The forced Duffing—Holmes oscillator with a para-
metrically perturbed cubic term is described by the
equation

X—x+ B[L+ncos(Qt)]x* = g[ycos(wt) —ax],(16)

where n and Q are the amplitude and frequency of the
parametric perturbation, respectively, and n < 1. We
rewriteit as

| L xEn an
V = X—BXx +¢g[ycos(wt) —PBnx cos(Qt)—av].

The corresponding unperturbed Hamiltonian is

2 2 4
v® X, BX

= — =+
Ho= 55" %

Setting Hy, we find that system (17) has a single
hyperbolic point (x = v = 0) with a single separatrix.
The solution on the separatrix can be represented
as[21] (seeaso [12-15])

J2

Xo(t) = =—=cosht, (28)
B
. A2 sinht
Vo(t) = %o(t) = === : (29)
° ° B cosh’t
Comparing this system with (1), we write
fo=v, fiu =0,

fop = X—BXg,
f,, = ycos(at) —nRx’cos(Qt) —av .
Therefore,
foOf, = vy[ycos(ut) —npxacos(Qt) —av ]
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and (2) becomes

+o00

D(t, tp) = —I dt[yv o(t —t,) cos(wt) 20)

—NBXo(t —to)V ot —to) COS(QL) —av ot —to)].
Changing to the integration variable T = t — t,, we
finaly obtain [12-15]
2J2_ _sin(wty)
7B “Cosh(w2)
sin(Qt,) L 4a
B snh(mY2) 3B
Thesign of D(t, tp) ispreserved if
6Bdcosh(mtQ/2
BACON(MYL) = i <N <N
Q' +4Q%
_ 1 _6/2Byw sinh(mY2)
p’(Q* + 4Q?%) cosh(w'2)’

where pisaninteger (see[12-15]). Using the left-hand
inequality in (22), we determinethe critical value of the
Melnikov function:

D(t, tp) =

(21)
0%+ 403

(22)

22 myw
JB cosh(Ttw'2)

D.(t, ty) = sin(wty)

4a .
+ 5[_3 —dsin(Qt,).

(An analogous calculation can be performed for the
right-hand inequality.)

Then, a subcritical value
Dou(t, to) < Dc(t, ty).
can be represented as

22 myw
JB cosh(Ttw'2)

Dou(t, to) = sin(wty)

+ §l—3 —dsm(Qto) a,

where a > 0 is a constant.

Since the perturbation required to regularize the
dynamics of system (16) has the form

f*(Q,t) = Re{e™A()},
the corresponding Melnikov distance

+00

D*(t,to) = — [ Vo(t) F*(Q, et
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is
+o00

D*(t, t,) = — J’ AtV (1) dt. (23)

To find A(t), we define
D*(t, to) + Dou(t, to) = D'(t, to)-

Since the perturbation f*(Q, t) is regularizing by
assumption, it holds that

D'(t, ty) > D(t, to).

It is obvious that we can take any D'(t, to) afortiori
greater than D(t, ty):

Dt 1) = 22

Ty W

sin(wt
J/p cosh(Tw'2) (@) (2
+§—[§—dsm(§2t o) T a.
On the other hand, we can use (23) to write
D'(t, t;) = — f A(t)V o(t)e " dt
(25)
+2“/é nyow sin(wt;) + —dsin(Qt,) —a.

JB cosh(Ttw'2) B

Equating (24) to (25), we have
IA(t)vo(t)eimdt = —2a.

The inverse Fourier transform yields

A(t) =

o(t) f e

Therefore, dynamics of the forced Duffing—Holmes
oscillator are regularized by the perturbation

4na6(t)

@) = 7

cos(Qt). (26)

4.2. Pendulum

The analysis presented above can be extended to the
classical nonlinear pendulum, whose separatrices make
up a heteroclinic orbit in the absence of damping. A
periodically forced, damped pendulum is described by
the equation [22]

X+ ox+snx = ycos(wt). (27)
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Fig. 2. Phase portrait of Duffing-Holmes oscillator (16):
0=0.145p3=8,n=003,y=014, Q=w=11
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Fig. 4. Phase portrait of Duffing—-Holmes oscillator (31): o
=0.145,=8n=0.03,y=014,Q=w=11,a=2.

The corresponding unperturbed Hamiltonian is

-2

X
H, = — —cosxX.
L)

The phase portrait of the pendulum is 2reperiodic in x,
with hyperbolic points at (11, X) and a center at (0, 0).
The system has oscillatory, rotatory, and separatrix
solutions. We focus here on solutions of the last type:

_ , tanht
Xo(t) = * cosnt’
.2
Xo(t) = i_cosht'
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B

Fig. 3. Phase portrait of pendulum (27): a = 0.04, y = 1.35,
w=1.0.

| | | |
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X

| |
-34 -33
Fig. 5. Phase portrait of pendulum (32): a = 0.04, y = 1.35,

w=10a=12

The Melnikov distance corresponding to (27) is[22]
D(ty, w) = —a f (%o(1))’dt
- (28)

iycos(wto)J' sin(xq(t))Xq(t) coswtdt.

Calculating the integrals, we obtain

D(ty, w) = —4a B%, 1% + _2ny cos(wty), (29)
cosh E—T—(—@
20
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Fig. 6. Spectral density of arealization x(t) for (a) original Duffing—Holmes oscillator (16) with a = 0.145, 3 =8, =0.03, y=0.14,
and Q = w= 1.1 and (b) regularized Duffing—Holmes oscillator (31) witha = 2.

where B(r, s) is Euler’s beta function.

Since this Melnikov function D(t, w) obviously
admits additive shift from its critical values, chaotic
behavior of the pendulum is suppressed by the pertur-
bation

_4mad(t)

A

cos(wt), (30)

where X, (t) is the solution on the unperturbed sepa-
ratrix.
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Physicaly, the results obtained here mean that
dynamics of the Duffing—Holmes oscillator and pendu-
lum are regularized by series of “kicks.”

4.3. Numerical Results

In the preceding section, it is shown that chaos in
Duffing—Holmes-oscillator and pendulum dynamics
can be suppressed by applying perturbations (26)
and (30), respectively. In this section, we present the
results of anumerical analysis.

We consider Egs. (16) and (27). In dynamics of the
Duffing—Holmes oscillator, the onset of chaos corre-
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Fig. 7. Spectra density of arealization x(t) for (a) origina
pendulum equation (27) witha = 0.04, y=1.35,and w= 1.0
and (b) perturbed equation (32) witha=1.2.

sponds to the breakdown of afigure-of-eight separatrix.
Figure 2 illustrates the structure of atypical chaotic set
obtained in this case. The onset of chaos in pendulum
dynamicsis associated with the breakdown of ahetero-
clinic trgjectory (see Fig. 3).

Consider the Duffing—Holmes oscillator and pendu-
lum with additional perturbations (26) and (30), respec-
tively. The corresponding equations are

X —x+ B[1+ncos(Qt)]x° = s[ycos(wt) —ax

o (30)
+ ZH@Waé(t)coth}
X+ ax+sinx = ycos(wt) 32)

+ 21tcosh(t —ty)ad(t) cos(wt).

Figures4 and 5 show numerical solutionsto systems(31)
and (32), respectively. It is clear that the dynamics of
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both oscillator and pendulum approach regular regimes
represented by periodic orbits.

To analyze systems (31) and (32) in more detail, we
invoke the spectral density defined as

S(®) = lim =2[X(w),

where X(w) isthe Fourier transform of asolution x(t) to
system (16) or (27). The spectral density provides a
simple, but reliable characterization of dynamics of a
system under study. It can readily be used to find out
whether amotion isregular or chaotic.

Figures 6a and 7a show the spectral densities calcu-
lated for origina systems (16) and (27), respectively;
Figs. 6b and 7b, the spectral densities for systems sub-
ject to perturbations (26) and (30), respectively. These
results demonstrate that chaos is suppressed and
dynamics of both systems are regularized.

Taking different parameter values corresponding to
chaotic behavior, one can find appropriate regularizing
perturbations (see above) and obtain qualitatively simi-
lar results, i.e., change from chaotic states to regular
oscillations.

Thus, our numerical analysis is consistent with the
analytical results obtained in Section 3.

5. CONCLUSIONS

Separatrix splitting is a very convenient method for
examining dynamical systems, because it can be used
to obtain nonintegrability conditions for many applied
problems in analytical form [23]. Currently, the prob-
lem of chaos suppression considered in this study is
mainly solved by numerical methods (e.g., see [1-10]).
However, asymptotic behavior of trajectories can be
examined analytically. Asaresult, the distance between
the separatrices split by a perturbation can be found in
general form by applying a perturbation method in the
vicinity of ahomoclinic trgjectory.

In this study, separatrix splitting is applied to
explore the possibility of chaos suppression in dissipa-
tive systems. Analytical expressions are obtained for
regularizing perturbations. These results are suffi-
ciently general to be applied to various dynamical sys-
tems that admit separatrix splitting.
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