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1. INTRODUCTION

The structure of the main Saturnian rings (A, B, C),
especially that revealed on a fine-scale level by the Voy-
ager spacecraft mission at the beginning of 1980s, is an
object of extensive investigation representing a dynam-
ical many-body system (for a detailed analysis of the
state-of-the-art prior to the appearance of new data
from the Cassini spacecraft, see [1]).

Now it is commonly accepted [2] that some of the
most typical large-scale structures (density wave trains)
are caused by the resonance interaction with Saturnian
satellites, including Lindblad resonances (related to the
radial perturbations produced by a satellite moving in a
gravitational field of a nonspherical body) and vertical
resonances (corresponding to the motion of a perturb-
ing body over an orbit inclined to the ring plane). These
factors are especially important for the fine-scale struc-
ture of Saturn’s A ring.

The fine-scale structure of Saturn’s two other main
rings, B and C, is still incompletely clear [1]. It was
suggested (see review [3]) that the fine-scale wave
structure might be related to quasi-hydrodynamic phe-
nomena in a continuous self-gravitating medium (e.g.,
to the Jeans-type instability, viscous overstability, etc.).
It was also pointed out that the characteristic critical
wavelengths at which such instabilities are observed
amount to 30–200 m for ring A, 7–30 m for ring B, and
fall below 7 m for ring C. Under the conditions typical
of ring B, detailed numerical simulations based on the
Navier–Stokes equation with and without allowance for
self-gravitation [4] predicted the existence of radial

structures comprising either narrow peaks separated by
80- to 100-m-wide empty gaps (the result of viscous
instability of self-gravitating liquid) or wave structures
with a characteristic length of up to 200 m. The latter
structures can result from a viscous overstability, which
represents a secondary unstable regime separated from
the primary viscous instability by a gap corresponding
to viscosities ensuring stable homogeneous distribu-
tions of particle density.

Apparently, these (and the other like) results require
the development of special methods for the effective
spatial-periodic deconvolution of images of the radial
structures of Saturn’s main rings. Based on the data on
Saturn’s A ring obtained from the Voyager spacecraft
mission, Spilker et al. [5] used a window Fourier trans-
form that revealed about 40 resonance structures which
were attributed to the influence of various Saturnian
satellites. At the same time, the analysis [5] indicated a
number of resonance regions in which the achieved res-
olution and the capabilities of the processing algorithm
were unable to resolve any features in the ring matter
density distribution. For ring B, Horn and Cuzzi [6]
performed a frequency analysis of the wave structures
using a window Fourier transform, and Thiessenhusen
et al. [7] studied the manifestations of higher reso-
nances on the background of stochastic effects.

Since 2004, new data acquired by the interplanetary
Cassini spacecraft have become available, including
high-resolution photographs of the Saturnian rings (see
[8] for a preliminary report of the Cassini research
project group). We believe that these data can be suc-
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cessfully processed using the wavelet transform tech-
nique—a method of analysis that has been actively
employed in the past two decades—which aids the win-
dow Fourier transform in providing better adaptation to
the specific features of analyzed signals in both spatial
and temporal (frequency) domains. The efficiency of
the wavelet transform with a simple Morlet wavelet
basis in solving this task was successfully demon-
strated by our study of resonance structures in Saturn’s
A ring [10]. The wavelet transform was performed
using a new algorithm that reduced the integral trans-
form to solving a Cauchy problem for a system of par-
tial differential equations with the initial conditions
representing the distribution under consideration. This
approach ensured a higher accuracy and better resolu-
tion in taking into account the local properties of the
distribution density.

This study is a continuation of our previous analysis
of the structure of the main Saturnian rings as revealed
by the high-resolution photographs made in 2004 by
the Cassini spacecraft, which have been processed by
the new wavelet transform method. However, since the
fine-scale structure of the brightness distribution in the
images of Saturn’s B and C rings exhibits a more irreg-
ular character compared to that of the A ring, it is expe-
dient to use the exact Morlet basis for the wavelet trans-
form calculations.

2. CALCULATION ALGORITHM 
FOR A WAVELET TRANSFORM

WITH A MORLET BASIS

If a signal under consideration is irregular and con-
tains, on the one hand, almost harmonic components of
finite duration and a constant or slowly varying fre-
quency and, on the other hand, separate outbursts, a
multiscale representation may require variation of the
parameters of the analyzing wavelet within broad lim-
its. Therefore, it is important to ensure that the wavelet
function 
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) would represent an element of the func-
tional basis [9]. This implies that the wavelet image
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). In particular, in the case of the energy normal-
ization condition

it is necessary that the function 
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) have the following
form:

where the asterisk denotes the complex conjugate.
This form satisfies the wavelet admissibility condition
that can be expressed either via the Fourier image as
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or via a requirement imposed on the wavelet proper:

This condition allows the signal to be restored from its
image upon the corresponding processing.

As can be readily checked, the Morlet wavelet basis
used in our previous investigation [10] does not obey
the above condition. However, if the basis frequency is
sufficiently high (
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), the integral rather negligibly
differs from zero. This circumstance was used for the
investigation of signals characteristic of the particle
density distribution in Saturn’s A ring.

The orthonormalized Morlet basis function is as fol-
lows [11]:

(1)

where the energy normalization is used because this
norm is calculated much simpler (due to the presence of
a difference in square brackets) than the amplitude
norm. The corresponding integral wavelet transform
can be written as
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It was shown [12] that, in contrast to the case of a
wavelet transform with the amplitude normalization,
the local behavior of the instant period in the given case
is more conveniently analyzed using a variant of the
wavelet transform modulus rescaled as 
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 of a monochromatic signal is deter-
mined from the relation

Previously, it was shown [10] that the wavelet trans-

form with an amplitude norm of exp(– /2) can be
found as a solution to the Cauchy problem for a system
of differential equations of the following type:

(3)

The initial conditions for the real, 

 

u

 

(

 

a

 

, 

 

b

 

) = Re

 

w

 

(

 

a

 

, 

 

b

 

),
and imaginary, 

 

v

 

(

 

a

 

, 

 

b

 

) = Im

 

w

 

(

 

a

 

, 

 

b

 

), parts of the wavelet

ψ ξ( ) ξd

∞–

∞

∫ 0.=

ψ ξ( ) 1

π4
-------=

× iω0ξ( )exp
ω0

2

2
------–⎝ ⎠

⎛ ⎞exp– ξ2

2
-----–⎝ ⎠

⎛ ⎞ ,exp

w a b,( ) 1

a
------- f t( )ψ*

t b–
a

----------⎝ ⎠
⎛ ⎞ t.d

∞–

∞

∫=

T
2π
------

Tω0

2πa
---------- 1–⎝ ⎠

⎛ ⎞ 4πω0a
T

----------------–⎝ ⎠
⎛ ⎞ .exp=

ω0
2

∂u
∂a
------ a

∂2u

∂b2
-------- ω0

∂v
∂b
-------,+=

∂v
∂a
------- a

∂2
v

∂b2
--------- ω0

∂u
∂b
------.–=



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 104      No. 3      2007

WAVELET ANALYSIS OF FINE-SCALE STRUCTURES 419

image in selecting the appropriate norm values are rep-
resented by the analyzed function proper and zero. In
the case of an exact basis (1), the transition to a limit as
a  0 leads to a derivative of the Dirac delta, rather
than to the delta function proper, which makes impos-
sible the use f(b) for w(0, b).

However, the condition of linearity with respect to
components of the kernel of the integral transform with
the Morlet basis allows separate calculation of the
quantities

(4)

which obey the equations

(5)

(6)

In the limit as a  0, the kernels of both transforma-
tions (4) become delta functions and, accordingly, the
initial conditions to Eqs. (5) and (6) acquire the follow-
ing form:

The system of equations for the real and imaginary
parts of W(1) is analogous to Eqs. (3). In the W(2) func-
tion, only the real part is nonzero that is described by
Eq. (6). Then, the required wavelet transform (2) with
the Morlet basis (1) is expressed via auxiliary functions
as

Below, we present the results of calculations performed
using the above algorithm with the aid of standard func-
tions of the solution of a system of parabolic differen-
tial equations written in MATLAB language. In view of
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a finite length of the processed signals, the Cauchy
problem was replaced by a boundary value problem
with the boundary conditions of the first kind, which
were represented by the initial values of the signal at the
terminal points.

3. WAVELET IMAGES OF THE STRUCTURES
OF SATURN’S B AND C RINGS

The approach described above has been applied to
analysis of the matter density distribution using photo-
graphs made by the Cassini spacecraft in the period
from October to December 2004. A narrow radial band
was selected on each image from the NASA/JPL/Space
Science Institute collection: PIA06535 (1024 × 15 pix-
els, Fig. 1a) and PIA06543 (1024 × 17 pixels, Fig. 2a)
for the B ring and PIA06537 (1024 × 15 pixels, Fig. 3a)
for the C ring (the center of the image occurs at a dis-
tance of 75000 km from Saturn). Figures 1b–3b show
the signals obtained by averaging over the sampling
sequence, where darker regions correspond to greater
values of the function. Figures 1c–3c show the wavelet
transform moduli with a base frequency of π; in
Fig. 3d, this frequency was 2π. Regions exhibiting
obvious distortions due to the edge effects were
removed from the images.

Figure 1 shows a central region of the B ring, and
Fig. 2 presents the external edge of this ring, where a
homogeneous dark region with a thin bright band inside
is the Huygens gap.

Note that the wavelet images of both imaged sites
contain rather extended regions displaying a wave
structure with weakly varying periods. In particular,
Fig. 1c shows that a region with dimensionless coordi-
nates from 0.2 to 0.65 (which corresponds to about
2000 km in absolute units) features a smooth variation
of the period from 0.083 to 0.044 (i.e., from about 380
to 200 km), so that the line of maximum is stepwise
with three plateaus. This region is followed by a seg-
ment of the line of maximum corresponding to a period
of 0.025 (115 km). Fine-scale structures with an
ordered instant periodicity are practically absent: in
addition to “wedges” corresponding to the points of
sharp local brightness variations, this level of resolution
reveals only a sloped resonance line in the vicinity of a
point with b = 0.4. Such a “background” periodicity
was previously also reported [6], but the proposed
wavelet transform reveals a “ladder” character of varia-
tion of the instant period. A possible physical explana-
tion of this behavior is provided by a resonance mech-
anism analogous to that generating long-period reso-
nance waves in the A ring (on both sides of the Encke
gap), which interact weakly with the strong short-wave
resonances.

In the wavelet image presented in Fig. 2c, the hori-
zontal region of the wavelet maximum corresponds to a
large-scale wave with a period of 0.063 (290 km). The
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corresponding perturbation is also clearly observed in
the brightness distribution profile (Fig. 2b).

Figure 3 shows a region of the C ring, which exhib-
its a rich wave structure. In addition to the general back-
ground density wave with a period of 0.1 (460 km), this
pattern clearly reveals two classical resonance curves.

These resonances are also manifested in Fig. 3c, but
they are most clearly pronounced in Fig. 3d, where the
lines of maximum are emphasized by the black and
white contrast lines. It should be noted that the appear-
ance of a weak dark band situated below the white line
is related to a large base frequency (leading to the man-
ifestation of higher harmonics during the processing of
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Fig. 1. Fine-scale structure of the central part of Saturn’s B ring.
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Fig. 2. Fine-scale structure at the external edge of Saturn’s B ring.
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nonsinusoidal waves), rather than to the presence of an
additional resonance.

4. CONCLUSIONS

The wavelet analysis of the structure of Saturn’s B
and C rings shows that these rings, as well as the A ring,
exhibit wave perturbations on various scales, which
weakly interact with each other. The character of the
wavelet image confirms the relatively small fraction of
resonance structures on the background of various
short-wave outbursts. However, it was demonstrated in
Section 2 that, in addition to the (previously reported)
waves in ring B with stable spatial periods, there are
long-wave resonance perturbations analogous to those
generated by the shepherd satellites in the A ring.

It should be noted that, using the inverse wavelet
transform for the exact form of the Morlet basis, it is
possible to cut out, for example, all resonance trains
from the radial signals. On the coordinate–period
plane, such trains correspond to intense wavelet peaks
forming a ladder pattern. Selecting the values of a
wavelet image along the line of maximum and its small

vicinity and substituting them into the relation for the
inverse wavelet transform, it is possible to obtain a set
of purely resonance oscillations. Then, subtracting
them from the total signal, we obtain a plot of the func-
tion suited for the analysis of fine-scale structures.
Localization of the regions of stable periodicity and
determination of their periods in terms of the quasi-
hydrodynamic model provides information about the
density and composition of the Saturnian ring matter,
which ensure the required intrinsic viscosity. The exist-
ence of a medium with this viscosity leads to the forma-
tion of a structure with the corresponding wavelength.

As can be readily seen, the complex wavelet trans-
form is much better suited for the analysis of such sys-
tems than the other window transforms. These proper-
ties are related to the fact that, owing to self-similarity
of the analyzing wavelet, the same characteristic num-
ber of oscillations cover the window in any frequency
interval. Removal of the highest-frequency component
(on scales close to zero) using the method described
above makes it possible to cleanse the signal of the
noise components (related both to the ring structure and
to the instrumental noise). The separation of aperiodic
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Fig. 3. Fine-scale structure of the central part of Saturn’s C ring.
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spots on the wavelet image makes possible the detec-
tion of structures comprising narrow dense ringlets.
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