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1. INTRODUCTION

Diffusion-limited aggregation (DLA) is the generic
name for a class of models describing the formation of
a cluster by addition of randomly walking particles
sticking to it. The original model introduced in [1] has
drawn continuing attention (e.g., see reviews in [2, 3]),
because it applies to a variety of physical processes,
including dielectric breakdown, solute aggregation, and
growth of bacterial colonies. Moreover, the DLA clus-
ter is of mathematical interest as an object with fractal
dimension.

To date, detailed numerical simulations of the
growth and scaling properties of DLA clusters have
been performed. In particular, the aggregate density
field was found to exhibit fractal behavior: the aggre-
gate mass is a power of its characteristic radius, with
exponent 

 

d

 

 = 1.71 and 2.50 in the two- and three-
dimensional continuum models, respectively [4].

Furthermore, the statistical properties of an individ-
ual branch of the DLA cluster have been analyzed by
examining quasi-one-dimensional random walk as a
model of fractal aggregate growth in a domain of length
much greater than its width. A summary of early studies
in this area was presented in [5]. It was found that 

 

d 

 

=
0.66 for the direction of power-law density profile. This
exponent was corrected in extensive numerical experi-
ments: 

 

d 

 

= 0.72 [6]. Currently, diffusion-limited aggre-
gation in the absence of external forces or interaction
between particles is a well-studied process that may serve
as a benchmark test for new numerical methods [7].

In theory, the most substantial progress has been
achieved by applying renormalization-group methods,
but only in discrete DLA of two types. In one approach,
a parameter is sought that leaves invariant the mean
occupancy distribution in a lattice DLA model [8]. In
the other [9], the cluster is generated by using a confor-
mal map of the unit circle such that the random walker

is mapped to a randomly chosen point on the growing
cluster perimeter at each step of an iterative process. A
modification of the latter approach was used in [6] to
simulate one-dimensional diffusion-limited aggrega-
tion in channel geometry.

However, it still remains unclear if DLA is tractable
as a continuum model formulated in terms of differen-
tial equations. In the original model proposed in [10], a
mean field theory that relates the continuous aggregate
density distribution to the probability distribution of a
random walker coming from infinity was developed by
using a power series expansion in cluster density. A
refined mean field theory was proposed in [11]. These
models provided a qualitative explanation of the pro-
cess, but the predicted dimension was substantially
lower than the measured one. For this reason, various
modified mean field approaches were proposed in sub-
sequent studies.

In [12], the growth rate was assumed to be propor-
tional to the gradient of the distribution of the randomly
walking particle, rather than to the distribution itself.
In [13], the growth rate was represented as a power of
the field variable with a phenomenological exponent
greater than unity to cut off growth at small density. As
a consequence, density buildup was observed in the
cluster front zone, and a higher fractal dimension is
obtained. In [14], the latter model was substantiated by
showing that the growth rate is proportional to a qua-
dratic combination of density and its derivatives if the
probabilities of attachment and interaction between
random walkers are equal. This result was obtained by
replacing the Boltzmann collision integral with a sys-
tem of differential equations.

Thus, even though the understanding of aggregation
kinetics has improved owing to progress in the frame-
work of mean field theory, the “final solution” has never
been found. In this paper, we show how the mean field
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theory can be modified to provide adequate description
of the scaling behavior of the system.

2. MODEL

In this section, we formulate a mean field DLA
model based on the equations proposed in [11]. We
present the complete derivation of a system of equa-
tions and demonstrate how a coarse time scale can be
introduced.

 

2.1. Preliminary Analysis 

 

Generally, two-dimensional aggregation kinetics
are modeled as follows. While an immobile seed of
diameter 

 

a

 

 is located at the origin, a particle born at a
distance 

 

R

 

 from the seed executes a random walk inside
the circle of radius 

 

R

 

 until it either escapes from the cir-
cle or comes in contact with the seed. The particle
crossing the circle reappears at a random point on it.
The particle that contacts the seed sticks to it, and then
a new particle is launched from a random point on the
circle. As the process repeats, each new particle can
stick to any particle on the cluster boundary. To mini-
mize the effects due to the finite size of the system, the
birth radius

 

 R

 

 is assumed to be much larger than the
characteristic radius of the cluster.

A typical DLA cluster has a highly ramified fractal
structure (see Fig. 1). New particles are captured in its
front zone. In mean field theory, the structure is
smeared, and the average perimeter of a cluster is diffi-
cult to define.

To describe the growth of a cluster, we introduce the
characteristic function (

 

r

 

, 

 

φ

 

), equal to unity at the
locations occupied by the aggregate and zero else-
where. The characteristic function (

 

r

 

, 

 

φ

 

) is defined

ρ̂

û

 

analogously for the random walker. In mean field the-
ory, these functions are ensemble averaged by assum-
ing that the particle distribution is isotropic. As a result,
we obtain probability density profiles 

 

ρ

 

(

 

r

 

) and 

 

u

 

(

 

r

 

) for
the cluster and the random walker, respectively.

The entire two-dimensional domain is partitioned
into square cells of area 

 

a

 

2

 

, where 

 

a

 

 is the particle diam-
eter. For each cell containing a particle with probability
one, we set 

 

ρ

 

 = 1/

 

a

 

2

 

, so that its integral over the cell is
unity. To facilitate analysis, we perform the change

 

ρ

 

  

 

a

 

2

 

ρ

 

, 

 

u

 

  

 

a

 

2

 

u

 

 so that 

 

ρ

 

 or 

 

u

 

 is unity in each cell
occupied by a particle. Then, the number of particles in
the cluster is expressed as

(1)

where 

 

ds 

 

is an area element and 

 

D

 

 is the region occu-
pied by the cluster.

In the model proposed in [11], the cluster growth is
modeled by the system of equations

(2)

supplemented with the boundary condition 

 

u

 

(

 

R

 

, 

 

t

 

) = 

 

c

 

,
which represents a source of random walkers located at
the birth radius. The kinetic equation for the random-
walker distribution describes diffusion and adsorption
onto the aggregate. In the kinetic equation for the clus-
ter density distribution, the terms 

 

u

 

ρ

 

 and 

 

a

 

2

 

∆ρ

 

 represent
the contributions of random-walker–cluster contact and
the lateral growth due to nonlocal interaction, respec-
tively.

Since random walk is much faster than cluster
growth, we set 

 

u

 

t

 

 = 0:

As mentioned in the Introduction, this model contains
the basic features of the model, but fails to predict the
correct fractal dimension, because it ignores the dis-
crete nature of the DLA cluster.

This explanation is corroborated by numerical anal-
yses of the following model [15, 16]. The region occu-
pied by the cluster is divided into annuli of width

 

 a

 

. The
annulus of radius 

 

r

 

n

 

 is characterized by the largest num-
ber 

 

M

 

n

 

 of particles that can be placed inside it (esti-
mated as 

 

M

 

n

 

 ~ 2

 

π

 

r

 

n

 

a

 

/

 

a

 

2

 

) and the actual number 

 

N

 

n

 

 of
particles contained in it. The probability of adsorption
of a random walker onto the annulus is 

 

N

 

n

 

/

 

M

 

n

 

. A ran-

N
1

a2
----- ρ s,d

D

∫=

∂ρ
∂t
------ u ρ a2∆ρ+( ),=

∂u
∂t
------ a2∆u u ρ a2∆ρ+( ),–=

∂ρ
∂t
------ u ρ a2∆ρ+( ),=

0 a2∆u u ρ a2∆ρ+( ).–=

 

Fig. 1. 

 

Typical DLA cluster.
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dom walker contained in the

 

 n

 

th annulus can be
adsorbed on the (

 

n

 

 – 1)th, (

 

n +1)th, or nth annulus. If
Nn/Mn � 1, then the total adsorption probability can be
approximated as

When a random walker is adsorbed onto the nth annu-
lus, the value of Nn increases by unity. Otherwise, it
drifts into an adjoining annulus with a probability of
1/2 ± a/rn , where the plus and minus signs in ±a/rn cor-
respond to the outer and inner annuli, respectively.

This model is simpler than direct numerical simula-
tion, because it makes use of the axial symmetry of the
cluster and retains information about the number of
particles in each annulus. Nevertheless, the predicted
fractal dimensions agree with measured ones, 1.65 [15]
and 1.72 [16].

Returning to the mean field theory and taking into
account the discrete nature of the cluster, we define
u(r, τ) as the probability distribution for a particle to be
located at a distance r from the origin at an instant τ.
Furthermore, we introduce an initial distribution u(r, 0)
and impose the impermeability condition ur|r = 0, R = 0.
We use a random-walk time variable τ and a discrete
cluster-growth time n to allow for the disparity between
the corresponding time scales, because it is obvious that
the adsorption of a single random walker does not result
in any significant change in the overall cluster geom-
etry.

To derive a kinetic equation for u(r, τ), we use sim-
ple partition into cells in the (x, y) plane. We introduce
the probability ρ(x, y) of finding a cluster particle in the
cell with coordinates x and y and the probability
u(x ± a, y ± a, τ) that the random walker occupies a
neighboring cell (see Fig. 2). Treating the random walk
followed by adsorption onto the cluster and the ensuing
evolution of cluster density as independent processes,
i.e., assuming that the change in cluster density over the
random-walker lifetime is negligible, we write the fol-
lowing difference equation for u(x, y, τ):

(3)

Then, we introduce a time increment δt ~ a2 and use a
Taylor series expansion to rewrite (3) as

(4)

where the Laplacian to be calculated in Cartesian coor-

Nn k+

Mn k+
-------------.

k 1–=

1

∑

u x y τ 1+, ,( ) 1 ρ x y,( )–( ) u x a y τ, ,–( )[=

+ u x a y τ, ,+( ) u x y a τ,–,( ) u x y a τ,+,( )+ + ]/4.

∂u
∂τ
------

a2

4
-----∆u ρ u

a2

4
-----∆u+ 

  ,–=

dinates reduces to

under the assumption of axial symmetry.
The resulting equation is similar to the second one

in (2) up to second-order terms, but it allows for nonlo-
cal adsorption, vanishing diffusion through fully occu-
pied regions (where ρn(r) = 1), and free diffusion into
unoccupied regions (where ρn = 0). We believe that this
equation provides a more accurate description.

2.2. Refined Model 

Since the asymptotic solution to the diffusion–
absorption equation derived above is such that

there exists a bounded function

describing, up to normalization, the time-averaged ran-
dom-walker distribution in space. The integral of
Eq. (4) with respect to τ from zero to the random-
walker lifetime T* combined with the condition
u(T*) = 0 yields

This equation is supplemented with the impermeability
condition

∆ ∂2

∂r2
-------

1
r
--- ∂

∂r
-----+=

u τ( ) ρτ–( ),exp≤

U r( ) 1
T*
------ u r τ,( ) τd

0

T*

∫=

u r 0,( )–
a2

4
-----∆U r( ) ρ U r( ) a2

4
-----∆U r( )+ 

  .–=

∂
∂r
-----U r( ) r 0 R,= 0.=

ρ(x, y)

u(x, y + a)

u(x + a, y)

u(x, y – a)

Fig. 2. Lattice model.

u(x – a, y)
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The equation for the cluster density ρ corresponding to
the first equation in (2) can be written as

where C is a normalization factor and n is the number
of an iteration step. In the conventional mean field the-
ory, the random walker hitting the cluster “spreads”
over its perimeter, which results in a slight increase in
the cluster size. According to (1), the ensuing change in
the cluster density is such that

Hence,

A numerical analysis of the corresponding system of
equations leads to results analogous to those reported in
[11]; in particular, the fractal dimension of the 2D clus-
ter is unity (see Section 3.1).

However, the adsorption of a particle at a point on
the real cluster perimeter has a negligible effect on the
probability of particle addition at other locations.
Therefore, we can introduce a coarse time scale by
assuming that the density of a cluster changes only after
its entire perimeter is covered by newly adsorbed ran-
dom walkers. Then, we obtain

(5)

∂ρ
∂n
------ CU ρ ∆ρ+( ),=

ρ n 1+( ) ρ n( )–[ ]2πr r/a2d∫ 1.=

C0
a2

2π U ρ ∆ρ+( )r rd∫
---------------------------------------------.=

C
2πRb

a
------------C0

2πRb

a
------------ a2

2π U ρ ∆ρ+( )r rd∫
---------------------------------------------,= =

where Rb is the characteristic distance from the origin
to the cluster boundary.

Figure 3 shows a typical density profile and a curve
U(ρ + ∆ρ) characterizing the location of new adsorbed
particles. The latter curve has a sharp peak in the neigh-
borhood of the cluster boundary and vanishes outside it.
Accordingly, we can approximately replace Rb with r in
expression (5) and write the final system of equations as
follows:

(6)

where

and n is the number of an iteration step at which the
cluster is covered by a new layer of adsorbed random
walkers and its boundary shifts by an increment on the
order of particle diameter.

3. ANALYSIS IN A PLANAR GEOMETRY

3.1. Numerical Analysis 

Using the initial density distribution

we solved Eqs. (6) by successive iteration with steps
corresponding to cluster size increments. At each step,
the second equation in (6) was computed on a 105 point
spatial grid by using an explicit finite-difference
scheme, the distribution ρn(r) obtained at the preceding
step, and

The resulting solution was substituted into (6) to calcu-
late a normalized increment of the cluster distribution.
We set the increment at r = 0 to zero, since the region
occupied by the seed is impenetrable.

The dashed curve in Fig. 4 is a numerical solution to
system (6) for the two-dimensional cluster. Its log–log
slope, –0.22 ± 0.02, corresponds to the cluster fractal
dimension d = 1.78 ± 0.02. The dotted curve predicted
by the mean field theory developed in [11] without
introducing any coarse time scale corresponds to a
lower dimension (d = 1).

ρn 1+ ρn CU ρ ∆ρ+( ),+=

u r 0,( )– ∆U r( ) ρn r( ) U r( ) a2

4
-----∆U r( )+ 

  ,–=

C
2πr

a
--------- a2

2π U ρ ∆ρ+( )r rd∫
---------------------------------------------,=

ρ0 r( ) 2r/a–( ),exp=

u0 r( ) r R–( )2/a2–( ).exp=

1 10 100 r
10–5

10–4

10–3

10–2

10–1

1

ρ, U(ρ + a2∆ρ)

ρ(r)

U(ρ + a2∆ρ)

Fig. 3. Cluster density ρ and density of a newly adsorbed
single-particle layer.
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3.2. Analytical Solution 

Since system (6) is amenable to iterative computa-
tion, it can be solved analytically by applying the finite
Hankel transform

where J(pi) is the Bessel function. The desired solution
can be represented by a series expansion:

where pi denotes the roots of the equation J1(pi) = 0.

Using the initial condition

and the boundary conditions

,

we obtain an infinite algebraic system of equations for
U(pi, t):

U pi t,( ) 1

R2
----- U r t,( )J0 pi

r
R
--- 

  r r,d

0

R

∫=

U r t,( ) 2 U pi t,( )
J0 pi

r
R
--- 

 

J0
2 pi( )

--------------------,
i

∑=

u r 0,( ) δ r R–( )/2π r/R( )=

∂
∂r
-----U r( ) r 0 R,= 0=

U pi( ) U pk( )K pk pi,( )
pk

∑+
2R2

πa2
---------

J pi( )

pi
2

-------------,=

with

By analogy with Fredholm integral equation of the sec-
ond kind, an exact solution to this system can be repre-
sented in terms of a resolvent kernel:

(7)

where

K pk pi,( ) = 

8 1
a2

4R2
--------- pk

2– 
 

a2 pi
2J0

2 pk( )
--------------------------------- ρ r( )J0 pi

r
R
--- 

  J0 pk
r
R
--- 

  r r.d

0

R

∫

U pi( ) 2R2

πa2
---------

J pi( )

pi
2

-------------
1
D
----

J pk( )

pk
2

-------------D pi pk,( )
k

∑+ ,=

.

D 1 1–( )m

m!
--------------

m 1=

∞

∑
K pα1

pα1
,( ) … K pα1

pαm
,( )

K pαm
ρα1

,( ) … K pαm
pαm

,( )

,
αm 1=

∞

∑
α1 1=

∞

∑+= … ……

D pi pk,( ) K pi pk,( ) 1–( )m

m!
--------------

K pi pk,( ) K pi pα1
,( ) K pi pαm

,( )

K pα1
pk,( ) K pα1

pα1
,( )

K pαm
pk,( ) K pαm

pα1
,( ) … K pαm

pαm
,( )

αm 1=

∞

∑
α1 1=

∞

∑
m 1=

∞

∑+=

… ……

…

Substituting the derivative of this solution into the
system of kinetic equations, we obtain a recursive
procedure for calculating cluster growth. However,
since it involves calculations of slowly convergent

series and integrals containing Bessel functions,
this procedure is more difficult to use for evaluating
the fractal dimension, as compared to numerical
analysis.

0.010

0.025

0.050
0.075
0.100

0.250

0.500
0.750

15 30 45 60 75 90
r

1.000
ρ

Fig. 4. Cluster density vs. radius predicted in [11] (dotted
curve) and by model (6) with coarse time scale (dashed
curve). The fractal density is 1.0 and 1.78 in the former and
latter cases, respectively.
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4. CONCLUSIONS

A new mean field approach to analyzing fractal pat-
tern formation by diffusion-limited aggregation is pro-
posed. Following previous studies (e.g., see [11, 14,
15]), we assume that the aggregate is axially symmet-
ric. The key distinction of the present approach is the
use of a coarse time scale taking into account the dis-
crete nature of DLA clusters. The coarse time scale is
introduced by requiring that the addition of a particle to
the cluster does not lead to any significant effect on the
continuous radial distribution obtained by changing
from the discrete to the continuum model and averaging
over the angle. To meet this requirement, we assume
that the cluster density changes jumpwise only after the
entire accessible perimeter of the cluster is covered by
a new layer of adsorbed random walkers. As a result,
we derive a difference–differential equation with dis-
crete time step. Furthermore, this form of the governing
equation entails the use of a normalization factor C pro-
portional to the accessible cluster perimeter.

The value of the normalization factor depends on
the dimension of the spatial domain of aggregate
growth. For cluster growth on the surface of a cylinder
along its element [5, 18], C = const since the corre-
sponding fractal dimension is evaluated by solving a
quasi-one-dimensional problem on a line parallel to the
direction of aggregate growth. For the two-dimensional
cluster, this factor is proportional to the circle perime-
ter. For the three-dimensional one, it scales with the
volume of a spherical layer with thickness equal to the
particle diameter, where random walkers are adsorbed.
Since the density profile drops near the cluster bound-
ary (see Fig. 3), the function ρ + ∆ρ has a sharp maxi-
mum, which makes it possible to define absorption
region and find the normalization factor.

The approach developed in this study is used to
obtain a fractal dimension of 1.78 in the two-dimen-
sional DLA model, in good agreement with direct
numerical simulations. We have also considered the
quasi-one-dimensional and three-dimensional DLA
models. In the former case, our solution of the proposed
system of equations yields a fractal dimension of 0.80 ±
0.02, in fair agreement with direct numerical simula-
tions [5, 18]. As the space dimension increases to three
and higher, the assumption of isotropy progressively
becomes less accurate (even if physically plausible)
and entails a systematic overestimation of the fractal
dimension of the cluster.

Finally, we note that the proposed approach can be
naturally generalized to aggregation in a system of par-
ticles of several types. In particular, if we assume that
particles of the same type stick together, then the nor-
malization factor in each equation corresponding to a
particular type of particles will be proportional to the
largest volume fraction that can be occupied by parti-
cles of this type in the current spherical layer.
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