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1. INTRODUCTION

The structure of planetary rings generally and Sat-
urn’s rings specifically arouses constant scientific inter-
est in studying them as a dynamical system of many
particles (see, e.g., [1] for an overview of the status of
the problem as of 2002 and references). A characteristic
feature of Saturn’s main rings (A, B, C) is their small-
scale structure detected by the Voyagers. Its prelimi-
nary analysis (see [2–4]) led to a model for the forma-
tion of thin spiral density waves through the resonant
interaction of ring particles with Saturnian satellites.

Subsequently, a window Fourier transform was used
to analyze the Voyager data on the A ring [5]. This anal-
ysis revealed and identified about 40 resonance struc-
tures attributed to the influence of various Saturnian
satellites. At the same time, the authors of [5] pointed
out a number of resonance regions in which the
achieved resolution and the capabilities of the process-
ing algorithm did not allow any features in the ring mat-
ter distribution to be detected.

Over the last year, the data obtained by the Cassini
spacecraft, including high-resolution photographs
(see [6] for a preliminary report of the Cassini task
group), have opened up new opportunities for studies in
this field. The wavelet transform, a method of analysis
that has been actively developed in the past two
decades, can be used to process them. An important
advantage of this technique over other approaches (see,
e.g., [7]) is a high degree of localization of the basis
function in both the spatial and frequency domains.
This allows nonstationary signals to be effectively stud-
ied based on the concept of an instant frequency (or
period). The interrelationship between the window

width and the instant period (the window contracts for
high-frequency signals and expands for low-frequency
signals; as a result, the effective number of oscillations
of the basis sine wave in the window is conserved)
favorably distinguishes the wavelet transform from the
window Fourier transform.

As applied to celestial mechanics, the wavelet anal-
ysis method has shown its efficiency in processing the
solution functions generated by Hamiltonian systems,
in particular, in the three-body problem [8] and in
studying the variations in the revolution periods of
asteroids in near-resonance regions [9]. As applied to
the Saturnian system, the wavelet transform was sug-
gested to be used to study the structure of the Encke gap
based on Voyager-2 data [10]. Since the main objective
of the authors of the cited paper was to identify struc-
tures of various scales in a noisy image, only real wave-
lets were used. However, determining the pattern of
local periodicity in Saturn’s ring structure requires
using a transform with a complex wavelet. The possible
efficiency of such an approach to this problem was
demonstrated with specific examples in [6, 11].

The main goal of this paper is to study the small-
scale structure of Saturn’s A ring using a new approach
to calculating the complex integral transform with a
Morlet wavelet based on the representation of the wave-
let transform as the solution to a system of partial dif-
ferential equations.

2. DESCRIPTION OF THE METHOD

The most suitable method for solving the problem of
distinguishing the instant period in a signal is the com-
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plex continuous wavelet transform
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(the asterisk denotes complex conjugate) in the ampli-
tude normalization
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with the Morlet basis. In the exact form that satisfies the
admissibility condition
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However, in most practical applications, the second
term in Eq. (3) is disregarded if the basis frequency is
fairly high (in general, 
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 5), and the following sim-
plified definition is used:

(4)

It corresponds to normalization (2) with const =

exp( /2). A significant advantage of this approxima-
tion is the simple relationship between the instant
period of the wavelet transform and the period of the
harmonic oscillation with frequency 

 

ω

 

. In other words,
the two-dimensional plot of the distribution of the mod-
ulus of the wavelet transform for a complex monochro-
matic function has a line of maximum that corresponds
to the period 
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. The factor, which is a Gaussian
function, performs a smoothing that automatically sup-
presses the signal noise. The relationship also remains
valid for a real function.

Varying the basis frequency allows the frequency
resolution to be changed: the higher the frequency 
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the more oscillations the basis wavelet function exe-
cutes on the characteristic window width and the closer
the modulus of the wavelet transform to the locally
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smoothed Fourier spectrum. At low 
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, it reveals an
individual spike.

It should be noted that, despite such advantages as
the simplicity of the algorithm and the high speed of
calculations, the standard method for calculating the
continuous wavelet transform associated with the inter-
mediate passage to the frequency domain and with the
use of the fast Fourier transform algorithm has a
number of shortcomings. The latter follow from pecu-
liarities of the fast Fourier transform: the initial data
must be represented by a sample of 2

 

N

 

 equidistant
nodes. Departures from this condition lead to a signifi-
cant complication of the calculations and/or loss of
accuracy.

Therefore, in this paper, we introduce an alternative
algorithm based on the observation that the transform
obtained by the convolution with the Morlet wavelet
satisfies the differential equation

(5)

The latter was derived in [12], but it was used only to
demonstrate the local properties of the a priori known
wavelet transform.

Let us represent the result of the wavelet transform
as a sum of the real and imaginary parts:

for which Eq. (5) can be written as the system

(6)

(7)

To find the corresponding initial conditions, let us write
the integral transform (1) with kernel (4) as

This integral is known to be independent of the imagi-
nary subtrahend in the exponent, and the kernel of the
transform in the limit 
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). The initial conditions for the
system of differential equations (6) and (7) follow from
the latter equality:
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Fig. 1. The Encke gap. The coordinate origin almost coincides with the position of the 11 : 10 resonance with Pandora. The next
wave structure is generated by the 15 : 14 resonance with Prometheus. The first wave train after the gap is generated by the 12 : 11
resonance with Pandora.
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Fig. 2. The far (from Saturn) edge of the Encke gap.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 101      No. 4      2005

ANALYSIS OF SMALL-SCALE WAVE STRUCTURES IN THE SATURNIAN A RING 649

analysis can be easily calculated:

3. IMAGE PROCESSING RESULTS 
FOR SEGMENTS OF THE A RING

We use the algorithm described above to analyze the
radial matter density distribution at the center of Sat-
urn’s A ring based on photographic data from the
Cassini spacecraft (July 2004). For our analysis, we
chose images from the NASA/JPL/Space Science Insti-
tute collection. A narrow stripe was separated from
each image in the radial direction: PIA06099 (1022 ×
20 pixels, Fig. 1a), PIA06094 (891 × 23 pixels, Fig. 2a),

w a b,( ) u2 a b,( ) v
2 a b,( )+ .=

PIA06095 (902 × 23 pixels, Fig. 3a), and PIA06093
(855 × 20 pixels, Fig. 4a). It is easy to verify that the
curvature of the structures constituting the ring within
each sample may be disregarded. For clarity, all images
were significantly stretched in the transverse direction.

We used the pair of initial conditions u(0, b) = f(b)
and v(0, b) = 0, where the function f(b) is obtained by
averaging over the sample (Figs. 1b–4b). Since the sig-
nal length is finite, the Cauchy problem for Eqs. (6) and
(7) must be replaced with a boundary-value problem.
We used boundary conditions of the first kind: respec-
tively, the initial signal value at these points and zero
for the real and imaginary parts of the wavelet trans-
form.
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Fig. 3. The outer part of the A ring containing the 4 : 3, 6 : 5, and 7 : 6 resonance with Janus, Pandora, and Prometheus, respectively.
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Values that are sufficiently high and convenient for
interpreting the results should be chosen for the basis
frequency. The frequencies ω0 = π (Figs. 1c–4c), 1.5π
(Figs. 3d and 5b), and 2π (Fig. 3c and 5c) in dimension-
less units of the sample length satisfy these conditions.
At the last two basis frequencies, the regions distorted
by the edge effect were removed from the figures. A
quantitative criterion for this in the (b, a) plane is the
condition

where b0 = 0 or 1.
The image being processed (Fig. 1a) represents the

neighborhood of the Encke gap. A characteristic feature
that is not revealed by the window Fourier transform is
the possibility of tracing the distribution of the instant
spatial period of the wave structure of the Encke gap
edge. In the plot of the modulus of the wavelet trans-
form (Fig. 1c), the lines of maxima are painted black.
Note that the large-scale development of a spiral den-
sity wave, which is accompanied by an increase in its
instant period, admits of a continuous passage to the
line of maximum corresponding to the large-scale
spikes. As follows from Fig. 1c, the characteristic size
on such scales is on the order of the extent of the train
of resonant waves generated by the 11 : 10 and 15 : 14

b b0–( )2

2a2
---------------------–

⎝ ⎠
⎜ ⎟
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exp 10 5– ,≥

resonances with the satellites Pandora and Prometheus,
respectively. There is a clear overlap between the lines
of maxima of various resonances (Fig. 1c). A similar
structure (but without a detailed analysis) has also been
revealed recently [6]. However, only one line of maxi-
mum may be preserved in our approach, which allows
relatively low ω0 to be used. We also found a similar
overlap between the lines of maximum of the instant
period for the small-scale and large-scale (formed by
Pan) resonant wave structures in the outer part of the
Encke gap (Fig. 2).

Another type of inhomogeneity that the suggested
wavelet analysis method can reveal consists in the pres-
ence of a small-scale periodicity in the interresonance
intervals. The high (up to 270 m per pixel) resolution of
the Cassini images and the algorithm described above,
which admits (in view of the peculiarities of the numer-
ical solution of differential equations) of a small step in
scale variable, makes such a study possible.

To analyze in detail the small-scale structure in the
interresonance region, let us consider the density waves
generated by the resonances of Janus, Pandora, and
Prometheus. The characteristic ladder form of their
instant spatial period is shown in Fig. 3c. To achieve a
higher spatial resolution, let us increase the basis fre-
quency to ω0 = 1.5π (Fig. 3d) and 2π (Fig. 3e). To
increase the sensitivity to the modulus of a low ampli-
tude, we will use various shades of gray for high values.
This leads to a smearing of the resonance lines, allow-
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Fig. 4. The density waves generated by the 12 : 11 and 5 : 3 resonances with Prometheus and Mimas, respectively.
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Fig. 5. The region between the 12 : 11 and 5 : 3 resonances with Prometheus and Mimas, respectively.

ing an almost stably periodic signal on the segment
[0.35, 0.45] connecting the first two resonant wave
trains to be highlighted by brightness lines. A short-
wavelength signal is also detected on the segment
[0.52, 0.67] between the second and third resonances.
However, it has an unstable spatial frequency varying
within the range 75π–107π (in units of the sample
length). The second frequency is equal to the frequency
of the wave between the resonances of Janus (4 : 3) and
Pandora (6 : 5). Its refinement using the basis frequency
ω0 = 2π yields 108(±1)π and confirms the stability of
the monochromaticity.

The spiral density waves in Fig. 4 generated by the
resonances of Prometheus (12 : 11) and Mimas (5 : 3)
are among the most distinct in Saturn’s ring structure.
For this reason, they were studied in detail and modeled
using Voyager data (see the earlier papers [2–4] and [5]).
Let us analyze the interresonance region by the wavelet
method using a recent Cassini photograph. Analysis of
the images obtained by a transform with a high fre-
quency resolution (Figs. 5b, 5c) reveals no stable peri-
odicity in this region. However, the existence of an
unstable signal with a spatial frequency of 125π (see
Fig. 5c, where the lines of maxima are painted white)
can be easily seen. In fact, it is close to the highest fre-
quency of the resonant trains. In addition, a short region
of more intense periodicity with a frequency of 67π

occupying the segment [0.30, 0.41] of the signal under
study is revealed. Examining the feature of the instant
period on the segment [0.36, 0.38] with a shape similar
to the resonance inclined line of the instant period, we
can assume that the frequency of 67π is related to the
longest-wavelength resonant perturbations.

4. CONCLUSIONS

Thus, the continuous wavelet transform with a com-
plex Morlet wavelet is an efficient tool for studying the
spatial radial structure of Saturn’s rings. It enables the
evolution of the instant period to be traced in detail on
various scales. A detailed analysis of the wave pro-
cesses in Saturn’s ring matter should include the inter-
action of the long-wavelength perturbation segments
with the small-scale wave trains generated by the reso-
nant interaction with other satellites and the formation
mechanisms of nearly monochromatic waves in the
regions connecting the high-frequency ends of the res-
onant zones.

The main results that allow a wavelet analysis of
high-resolution Cassini images to be performed are the
following. There are overlaps between the lines of the
instant period of the resonant waves generated by Pan
and the smaller-scale wave trains generated by other
satellites near both boundaries of the Encke gap. In



652

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 101      No. 4      2005

POSTNIKOV, LOSKUTOV

addition, nearly monochromatic waves of various
extents, up to the joining of the resonant trains, can be
present in the interresonance regions.

It should be noted that our analysis is preliminary
one and is in further elaboration with allowance made
for the image adjustment depending on the inclination
at which the photographs were taken and the absolute
distances to the region of the rings under study.
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