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INTRODUCTION

Currently, there is a particular interest in nontradi-
tional methods for information processing (e.g.,
see [1

 

−

 

11] and references therein). This is due to a
rapid recent growth of requirements for information
security. Ordinarily, information security is meant as
the protection of information against illegal access by
unauthorized users [12–14].

A new method of encryption for the protection of
information relates to the applications of the modern
theory of dynamical systems, which considers chaotic
signals as data carriers [3, 6, 8, 9, 11, 15–19]. Recent
results obtained in this field substantially extend the
range of methods available for data storage and data
transmission.

It is known that the behavior of chaotic systems sen-
sitively depends on initial conditions and external per-
turbations. For a long time, such systems were consid-
ered unsuitable for practical applications because of
their seemingly unpredictable and uncontrollable per-
formance. However, further investigation demonstrated
that such systems not only can be controlled but also
can be used for practical applications. In particular,
along with the recording–readout of data, chaotic sys-
tems proved to be adaptable for the hidden transmission
of information. Investigations in this area are mainly
based on the two following assumptions.

(i) Certain periodic trajectories can be stabilized by
using external perturbations [20–26].

(ii) Under specific conditions, two independent cha-
otic systems can be synchronized [27–31].

It is known that a dynamical system may be defined
either in the form of maps or by differential equations.
In the first case, the methods of trajectory stabilization
are most frequently used, thus making it possible to
construct fairly efficient data transmission systems
(see, e.g., [5–8, 15, 18, 19]). The second variant (differ-
ential equations) is preferable for the problems con-

cerning synchronization. In this case, analog devices
can be constructed (see [27, 28, 32–35, and references
therein]).

In this study, we propose an algorithm based on sta-
bilization of periodic trajectories in one-dimensional
(1D) maps for the hidden transmission of information.
The method of stabilization is based on a known fact
[22, 23, 26] that, for considerably general families of
1D maps, orbits of a certain period can be stabilized by
applying external periodic perturbations. The stable
orbits of a perturbed map are used to encode informa-
tion. The perturbations are transmitted as a useful sig-
nal, and the mapping function presents the key for
decrypting the received message. In this study, we pro-
pose an encoding algorithm that can be implemented in
practice and can describe the results of applying this
algorithm to a family of quadratic maps.

1. STABILIZATION 
OF PREDETERMINED ORBITS BY MEANS

OF PARAMETRIC PERTURBATIONS

Let us consider the mapping of a certain region 

 

M
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j

 

 onto itself:
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Let us introduce the concept of parametric perturba-
tion. Assume that the mapping is specified with respect
to a parameter in such a way that its value is defined at
every instant; i.e., 

 

G 

 

: 

 

A

 

  

 

A

 

. Then, the perturbed map
has the form

 

(2)

Ta : x � f x a,( ),

Ta : 
x � f x a,( )
a � g a( ).⎩

⎨
⎧
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Perturbation will be referred to as 

 

periodic 

 

with period
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 if function 
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 is defined only at points 

 

a

 

1

 

, …, 
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 in
the following way: 
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. In other words, perturbation is specified by
the successive substitution of 

 

τ

 

 parameters into map (1).
In this case, the totality of perturbations with period 
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can be put in correspondence with the set 
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Having introduced the periodic perturbation with
period 

 

τ

 

 for map (1), we obtain for perturbed map (2):

 

(3)

 

Let us consider 

 

τ

 

 functions of the form

 

(4)

 

where 

 

x

 

 = {

 

x

 

1

 

, …, 
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j

 

}, 

 

f

 

i

 

 = { , …, },

 

 and 

 

F

 

i
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{ , …, }

 

 are 

 

j

 

-component functions, 

 

i

 

 = 1, 2, …,

 

τ

 

. In terms of these functions, perturbed map (2)
appears as

 

(5)

 

with the initial conditions 

 

x

 

1

 

 = 

 

f

 

1

 

(

 

x

 

0

 

)

 

 and 

 

x2 = f2(x1), …,
xτ − 1 = fτ – 1(xτ – 2).

According to [26, 36], the maps constructed above
have the following important properties.

Let us assume that transformation Tk, 1 ≤ k ≤ τ, has
a orbit with period t and functions fk(x) are continuous.
Under this assumption, map Tp, p = k + 1 (modτ), also
has a orbit with period t. Moreover, if the orbit of map
Tk is stable, then, the periodic orbit of map Tp is stable
as well and, if fk is a geomorphism, maps Tk and Tp are
topologically equivalent.

â
A A … A⊗ ⊗ ⊗

τ  times

â

T

Ta1
 : x � f x a1,( ) f1≡

Ta2
 : x � f x a2,( ) f2≡

………………………
Taτ

 : x � f x aτ,( ) f τ.≡⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

F1 f τ f τ 1– …f2 f1 x( )( )…( )( ),=

F2 f1 f τ f τ 1– …f3 f2 x( )( )…( )( )( ),=

…………………………………,

Fτ f τ 1– f τ 2– …f1 f τ x( )( )…( )( ),=

f i
1( ) f i

j( )

Fi
1( )

Fi
j( )

T1 : x � F1 x a1 … aτ, , ,( ),

T2 : x � F2 x a1 … aτ, , ,( ),

…………………………,

Tτ : x � Fτ x a1 … aτ, , ,( ),

Indeed, the existence of the orbit entails that

( ) =  and ( ) ≠ , 1 ≤ j < t. Consider the rela-
tionship that follows directly from the definition of Fk:

(6)

It can be seen readily that fk( ) = (fk). Therefore,

for point  and n = t, we find (fk( )) = fk( ( )) =

fk( ). Furthermore, when 1 ≤ l < t, we have (fk( )) ≠

fk( ) because, if it were (fk( )) = fk( ), we would

arrive at (fk( )) = fk( ( )) = fk( ). However, by
virtue of the uniqueness of functions fi, i = 1, …, τ, it fol-

lows that fk – 1(fk − 2(…fk( ( )))) = fk – 1(fk – 2(…fk( )))

(see (4)); i.e., ( ) = Fk( ). However, this contra-

dicts the above assumption. In other words, point fk( )
is periodic with period t for map Tp .

If point  is a stable periodic point of map Tk , then
there exists such a vicinity U �  that the relationship

(x) =  holds true for each point x ∈ U. In view

of continuity of functions fk , this leads to

( (x)) = (fk(x)) = fk( ). In other

words, all points from the vicinity of fk(U) tend to point

fk( ) under map .

Topological equivalence follows directly from (6)
and the definition.

The essence of the above statements is that the
investigation of a periodically perturbed map can be
substantially simplified. Thus, instead of initial nonau-
tonomous map (2), any one of autonomous maps T1, T2,
…, Tτ defined by relationships (4) and (5) can be consid-
ered. Thereby, the dynamical behavior of initial map (2)
is completely specified by the totality of maps (5),
which act independently of one another and are coupled
by only the initial conditions. It follows from this [23,
26, 36] that period t of any orbit of perturbed map (2) is
a multiple of perturbation period τ: t = τn, where n is an
integer.

Note that neither the construction of maps T1, …, Tτ
by formulas (3)–(5) nor the proof of the statements
required restrictions on set A. In other words, all the
results are true for arbitrary set A of allowable values a of
dynamical system (1) with τ-periodic perturbation (2).

Let us form a subset Ach ⊂ A of the set of parametric
values such that map (1) has chaotic behavior if a ∈
Ach. In a number of studies (see, e.g., [22, 23, 36, 37]),
it was analytically substantiated that, at j = 1 and j = 2,
the periodic perturbations may suppress the chaos and
stabilize the map orbits. It was also shown that, for cer-
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tain 1D and 2D chaotic maps, there are such perturba-
tions  = (a1, a2, …, aτ) that perturbed map (2)
becomes regular and has a stable orbit with period t =
τn when  ∈ Ach, Ach =  (or

g(a) ∈ Ach, see (2)). 

This result is proved for a wide class of maps [26,
38]. The property to display periodic dynamics under
the action of external perturbations seems to be typical
for a fairly wide class of maps.

For practical implementation of encoding and trans-
mission of information by means of perturbed maps, it
is required to know how to find such τ-periodic trans-
forms G : a � g(a) for map (2) that convert it into a
map having a stable orbit. Let us restrict the consider-
ation to 1D (j = 1) maps. In this case, the theory devel-
oped in [22, 36, 37, 39] can be generalized and the
method of searching for special perturbations allowing
the stabilization of preassigned orbits becomes applica-
ble for practical purposes (see Section 3).

Let map Ta : x � f(x, a), x ∈ M, a ∈ A possess the
following properties:

(i) There exists a subset σ ⊂ M such that a value
a* ∈ A that satisfies the equality f(x1, a*) = x2 can be
found for any x1, x2 ∈ σ.

(ii) There is a critical point xc ∈ σ such that
∂f(x, a)/  ≡ Dx f(xc, a) = 0 for all a ∈ A.

In this case, it can be readily shown that, for all x2,
x3, …, xτ ∈ σ, there are x1 and a1, a2, …, aτ such that
orbit (x1, x2, …, xτ) is a stable orbit of perturbed map Ta

for  = (a1, …, aτ).
Indeed, let us select arbitrary elements x1, x2, …, xτ .

By definition (1), the system of equations

(7)

for parameters a1, a2, …, aτ has the solution in the form
 = (a1, a2, …, aτ). Therefore, sequence (x1, x2, …, xτ) =

p is the τ-periodic orbit of map Ta with periodic pertur-
bation  = (a1, a2, …, aτ). To make orbit p stable, it is
sufficient to select element x1 near or at critical point xc ,

because β(p) ≡ (xi, ai) and Dx f(xc, a) = 0 for
every a. This provides the stability criterion |β(p)| < 1.

Now, let us estimate the admissible distortions of
parameters (a1, a2, …, aτ) and orbit elements (x1, x2, …,
xτ). Let perturbation (a1, a2, …, aτ) correspond to stable
orbit (xc, x2, x3, …, xτ). Assume that parameters ai have
slightly changed to become ( , , …, ) = (a1 + ∆a1,
a2 + ∆a2, …, aτ + ∆aτ), where |∆ai| ≤ δa. Let us find the
maximum value of δa at which the perturbed orbit

â

â Ach Ach … Ach⊗ ⊗ ⊗
τ times

∂x x xc=

â

f x1 a1,( ) x2,=

f x2 a2,( ) x3 … f xτ aτ,( ), , x1= =

â

â

Dx f
i 1=
τ∏

a1' a2' aτ'

remains stable and study the corresponding orbit distor-
tions, i.e., determine ∆xi for ( , , …, ) = (xc + ∆x1,
x2 + ∆x2, …, xτ + ∆xτ). This approach can be formalized
as follows.

Let perturbed map Ta have a stable τ-periodic orbit
p = (x1, x2, …, xτ) for  = (a1, a2, …, aτ). If

where i = 1, 2, …, τ, Sa = , L =

, and Sx = , then this

map has another stable τ-periodic orbit p' = (xc + ∆x1, x2

+ ∆x2, …, xτ + ∆xτ), where |∆xi| ≤ δx = 1/  for  =
(a1 + ∆a1, a2 + ∆a2, …, aτ + ∆aτ).

In order to substantiate the above estimate, we
assume that all parameters ai are perturbed:  = ai +

∆ai . Let us find variation ∆x1 =  – xc. Here, element

 is a fixed point of map T1 (see (5)); i.e.,  = F1( ,

, , …, ). This yields xc + ∆x1 = F1(xc, a1, a2, …,

aτ) + DxF1(xc, )∆x1 + F1(xc, )∆ai. Taking

into account the relationships xc = F1(xc, ) and DxF1(xc,

) = β(p) = 0, we obtain ∆x1 = (xl,
al)Daf(xi, ai)∆ai. Therefore,

(8)

Let us estimate the change of the multiplier of the
orbit, β(p') = f( , ) =

f(xi, ai) f(xl, al)∆xi + f(xi,

ai) f(xl, al)∆ai. In both sums, only the first

terms are nonzero, since Dxf(x1, a1) = Dxf(xc, a1) = 0.

Therefore, β(p') = [ f(xc, a1)∆x1 + f(xc,

a1)∆a1] f(xl, al). However, f(xc, a1) =

Da(Dx f(xc,  = Da(0) = 0; therefore, |β(p')| =

|∆x1|| f(xc, a1)| . The orbit

x1' x2' xτ'
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remains stable under the condition |∆x1|| f(xc,

a1)|  ≤ |∆x1|  < 1. Hence, it fol-

lows that |∆x1| ≤ δx = 1/( ).

Thus, we find that the orbit is stable if perturbation
∆x1 is less than δx . The relation between the maximum
possible value of ∆x1 and δa is given by inequality (8).
Finally, the restriction imposed on δa is obtained in the

form δaτSa  = 1/( ) or

These results validate the use of chaotic maps for the
efficient encoding and hidden transmission of informa-
tion.

2. USING THE STABILIZED ORBITS 
OF PERTURBED MAPS FOR THE ENCODING

AND TRANSMISSION OF INFORMATION

The original method for hidden transmission of
information is based on the encoding of alphabetic
symbols by the stabilized orbits of chaotic maps and
can be implemented in the following manner. Let the
period of each orbit stabilized (by selecting the pertur-

Dx
2

Dx f xl al,( )
l 2=
τ∏ LSx

τ 1–

LSx
τ 1–

Sx
i

i 1=
τ∑ LSx

τ 1–

δa
1

τSaLSx
τ 1– Sx

i

i 1=

τ

∑
------------------------------------.=

bation) be assigned to a certain alphabetic symbol. The
encoded symbol is transmitted when the assigned per-
turbation is sent to a receiver. The decoding procedure
consists in applying the transmitted periodic perturba-
tion to a map contained in this receiver. According to
the period of the stabilized orbit in the receiver, the type
of symbol that was transmitted over the communica-
tions channel can be determined. Therefore, the chosen
type of the map’s family is the key for deciphering the
encoded information.

We now consider the basic principles of information
processing based on the stable orbits of a perturbed
map. Let a map orbit with period τ arise from a pertur-
bation. The stability of this orbit is given by the rela-

tionship β(p) = f(xi, ai), where x1 = f(xτ, aτ) and

xi + 1 = f(xi, ai). If |β(p)| < 1, the orbit is stable. It is clear
that, when f(x, a) depends smoothly on the parameter,
the space of perturbations Rτ contains a certain region
U where a stable orbit is preserved.

Let us assume an information sequence that consti-
tutes symbols of an alphabet, where every symbol is put
in correspondence with a particular natural number. Let
us find all possible perturbations leading to stable orbits
with periods equal to such numbers. In other words, we
localize in the perturbation space a subset Aτ such that
the perturbed map has a stable orbit with the prescribed
period if  ∈ Aτ . This encoding algorithm can be rep-
resented by the following scheme:

Dxi 1=
τ∏

â

Y

symbol⎩ ⎭
⎨ ⎬
⎧ ⎫ n1, n2, n3

ASCII  code ⎩ ⎭
⎨ ⎬
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, ,{ }

 

sets  of  parameters ⎩ ⎭
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⎧ ⎫
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n

 

3

 

2+

 

, ,

 sequence  of  numbers ⎩ ⎭
⎨ ⎬
⎧ ⎫

 

Thus, each of the symbols is associated with a set of
periodic perturbations that give rise to a orbit with the
desired period. As a result of transmission, perturbation
in the form of a finite set of real numbers (parameters

 

a

 

1

 

, 

 

a

 

2

 

, …, 

 

a

 

τ

 

) arrives at the receiver. To decode (decrypt)
the received symbol, this perturbation should be
applied to the map used for encoding. The resulting
perturbed map has a stable orbit, whose period can be
determined by iteration from an arbitrary initial point.
Thus, the encoded symbol is recovered. In this method,
each information sequence consisting of a set of sym-
bols is put in correspondence with the transmitted set of
real numbers. Using the fact that every symbol may be
encoded by a subset 

 

A

 

τ

 

 rather than by a single perturba-
tion , we may apply a different perturbation 

 

 

 

∈

 

 

 

A

 

τâ a'ˆ

 

to each of the equal symbols in the transmitted
sequence. Moreover, for most maps, subset 

 

A

 

τ

 

 is a sub-
space of the perturbation space and, hence, perturbation

 

 

 

∈

 

 

 

A

 

τ

 

 may be selected at random. Therefore,
although the original message may include identical
symbols, the transmitted sequence looks absolutely
random. This excludes the possibility of the transmitted
information being decoded by an unauthorized user.

It is obvious that all the families of unimodal maps
satisfy the conditions presented in Section 2. Since any
orbit of the form (

 

x

 

c
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x

 

2

 

, 

 

x

 

3

 

, …, 

 

x

 

τ

 

) is stable for arbitrary

 

x

 

i
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σ

 

, the encoding and decoding algorithms can be
implemented practically. The determination of 

 

a

 

1

 

, …,

 

a

 

τ

 

 as solutions to system of equations (7) includes the
following operations:

a'ˆ
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(i) Each symbol is put in correspondence with a par-
ticular map orbit τ.

(ii) The values of x2, x3, …, xτ ∈ σ are arbitrarily
chosen.

(iii) Equations (7) are used to calculate parameters
(a1, a2, …, aτ) =  for the set of points (xc, x2, x3, …, xτ).

In this way, each of the symbols is associated with a
parametric perturbation  = (a1, a2, …, aτ). Owing to
arbitrary selection of points x2, x3, …, xτ ∈ σ, each of
the repeated symbols may be encoded by sequence x2,
x3, …, xτ that is randomly chosen from σ. Thus, the pro-
posed method allows conversion of a symbol sequence
into a numerical sequence, for example,

. (9)

In view of the randomness of elements x2, x3, …, xτ and
functional dependence (7), this numerical sequence is
random. Now, numerical sequence (9) that is obtained
is transmitted to a receiver. The decryption (decoding)
of sequence (9) reduces to the extraction of sets (a1, a2,
…, aτ) associated with particular symbols. This can be
done readily since each of such sets corresponds to the
stable orbit (x1, x2, …, xτ) with period τ and x1 = xc. Cal-
culating the other elements x2 = f(xc, a1), x3 = f(x2, a2),
…, we arrive at a certain step to xτ + 1 = f(xτ, aτ) = xc. The
number of this step is the orbit period corresponding to
the encoded symbol. The further decoding is nothing
but a repetition of the above operation starting from
step aτ + 1:  = f(xc, aτ + 1),  = f( , aτ + 2), etc.

3. NUMERICAL INVESTIGATIONS
OF THE ENCODING METHOD

To implement the encoding method described
above, we consider the family of quadratic maps

(10)

This family is commonly used to model a wide range of
physical systems (see, e.g., [40–43] and references
therein). Furthermore, any unimodal map is semiconju-
gate to a quadratic map. Following (2), we introduce a
τ-periodic perturbation. In this case, it is convenient to
represent perturbed map (10) in the form

(11)

If this map has a orbit p = (x1, x2, …, xt) with the period
t = τ, the orbit points obey the following system of
equations: x2 = a1x1(1 – x1), x3 = a2x2(1 – x2), …, xt =
atxt(1 – xt). To solve the inverse problem, i.e., to find the
parameter values at which map (11) has orbit p = (x1, x2,

â

â

MAP… a1 a2 a3 …, , ,

x̃2 x̃3 x̃2

xn 1+ axn 1 xn–( ).=

xn 1+ anxn 1 xn–( )=

an an mod τ 1+( ).=⎩
⎨
⎧

…, xt), it is necessary to solve the above equations for
ai:

(12)

It is obvious that the condition ai ∈ [0, 4] does not hold
true for all xi ∈ (0, 1). However, when it does hold true,
there exist parameters (a1, a2, …, at) at which perturbed
map (11) has orbit p for each p = (x1, x2, …, xt). When

|β(p)| = | (1 – 2xi)| < 1, this orbit is stable. In
this case,

(13)

Since we have (1 – 2xc)/(1 – xc) = 0 for xc = 1/2, inequal-
ity (13) can always be satisfied.

The sets of quantities (x1, x2, …, xt) at which ai ∈
[0, 4] and inequality (13) holds true form a region in
space, Rt. Each point of this region corresponds to a sta-
ble orbit of the perturbed map. Using the expressions
for ai, i = 1, 2, …, t, we have no difficulty in identifying
this region in parametric space Rt.

Let us consider the simplest case of a perturbation
with period τ = 2. It is obvious that the region of stable
orbits in space (x1, x2) is given by the following system
of inequalities:

and

The first two inequalities are fulfilled for the set of all
admissible orbits with a period of 2. The third inequal-
ity restricts this set to a subset where only stable orbits
exist. To solve this inequality, we specify x1 ∈ (0, 1) and
consider special features in the behavior of x2 . This
yields the following conditions:

a1

x2

x1 1 x1–( )
------------------------,=

a2

x3

x2 1 x2–( )
------------------------ … at, ,

x1

xt 1 xt–( )
----------------------.= =
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Thus, we obtain the domain of existence for all sta-
ble orbits p = (x1, x2) of map (11) with periods of 2
(Fig. 1a). The corresponding range of the values of
parameters (a1, a2) is obtained when the domain shown
in Fig. 1a is transformed by formulas (12). A simple
way to do this is to divide the domain in Fig. 1a into
subdomains that admit the biunique mapping of these
subdomains according to (12). Then, the domain
boundaries are mapped under the condition that points
inside the boundary get mapped to points inside. Note
that transformation of this type leads to a singularity at
point (0, 0). A detailed analysis shows that, for τ = 2,
mapping of the singularity into space (a1, a2) results in
the curve a2 = 1/a1.

The domain of existence of stable orbits p = (x1, x2)
with periods of 2 is shown in the parametric space
(a1, a2) in Fig. 1b. To reveal the details of map (12), the
domain in Fig. 1a is divided by straight lines x1 = 1/2
and x2 = 1/2 into four portions denoted by different
hatching. The corresponding subdomains in the space
(a1, a2) are hatched similarly. Since some domains in
Fig. 1 overlap, map (12) is unique but not biunique.
Moreover, the presence of overlapping regions suggests
that, under certain perturbations, map (11) exhibits
bistability and has two coexistent stable orbits.

In [39], range [3.8, 4.0] was thoroughly investigated
for the possibility of chaos suppression. However, this
range does not overlap the domains presented in
Fig. 1b. For this reason, the orbits with periods of 2
were not discovered in map (11) at that time.

In the general case, i.e., under the action of pertur-
bation with period τ > 2, only the stable orbits in the
form p = (xc, x2, x3, …, xt) = (1/2, x2, x3, …, xt) (t = τ)
should be selected and used for calculating parameters
(a1, a2, …, aτ). It is obvious that quadratic map (10)
complies with all the requirements presented above.
For this map, set σ is the segment [xb, xe], where xb and
xe are the solutions to the equation xint = f(x, 4) and point
xint is the intersection of curves y = 4x(1 – x) and y = x;
i.e., [xb, xe] = [1/4, 3/4]. Thus, when a ∈ [0, 4] and x ∈
[1/4, 3/4], the admissible errors in the parameters for
the quadratic map can be estimated from

The proposed encoding method can successfully be
applied in a system for the encryption of symbols
entered from a PC keyboard. Let us consider how to

Sa
∂

∂a
------ f x a,( )

x a,
max

1
4
---,= =

Sx
∂

∂x
------ f x a,( )

x a,
max 2,= =

L
∂2

∂x2
-------- f x a,( )

x a,
max 8.= =

implement this for the MS-DOS operating system.1 On
IBM-compatible computers, each symbol entered from
a keyboard is encoded by an integer. This number is an
ASCII character and may take a value from 0 to 255. In
particular, the ASCII characters from 65 to 90 and from
97 to 122 correspond to the capital and lowercase let-
ters of the English alphabet, A–Z and a–z, respectively.
The ASCII character set represents each symbol by
three integers n1, n2 , and n3 satisfying the inequalities

1 Note that the method can easily be adapted to the Windows oper-
ating system as well.

0 n1 2, 0 n2 9, 0 n3 9.≤ ≤≤ ≤≤ ≤

5

6

7

1

2 3

4

1

0 1x1

x2 (a)

(b)
4

0 4a1

a2

Fig. 1. The domain of existence for period-2 stable orbits of
perturbed (τ = 2) quadratic map (11) with the boundaries
(1) x2 = 4x1(1 – x1), (2) x1 = 4x2(1 – x2), (3) x2 = (3x1 –
2)/(5x1 – 3), and (4) x2 = x1/(3x1 – 1) in plane (x1, x2) and the
boundaries (5) a2 = 1/a1, (6) a2 = 8/[a1(4 – a1)], and (7) a1 =
8/[a2(4 – a2)] in plane (a1, a2).
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Fig. 2. Variants of numerical sequences encoding the word CHAOS with the use of a quadratic map.

For example, letter A with the ASCII character number
65 is represented by n1 = 0, n2 = 6, and n3 = 5; letter z
with the ASCII character number 122, by n1 = 1, n2 = 2,
and n3 = 2.

Now, we can formulate how the encryption system
works:

(a) First, triad n1, n2, and n3 is assigned to each sym-
bol in accordance with its ASCII number.

(b) Each number in the triad is associated with a
sequence of parameters stabilizing the orbit with period
ni + 2.

This algorithm is schematically represented by the
flow chart below.

Y

symbol⎩ ⎭
⎨ ⎬
⎧ ⎫ t

number⎩ ⎭
⎨ ⎬
⎧ ⎫

Tt

stable  cycle ⎩ ⎭
⎨ ⎬
⎧ ⎫

 

set  of

perturbations

 
⎩ ⎭
⎨ ⎬
⎧ ⎫ 

In the last step, there is a transition from the separate
sets of parameters to a continuous sequence, which is
transmitted to a receiver with a decipherer. The deci-
pherer converts this sequence into a sequence of inte-
gers corresponding to the orbit periods. Diminishing
each of the integers by two and grouping the sequence
into sets of three, we easily reconstruct the ASCII char-
acter of a symbol and the symbol itself.

It is seen that any symbol can be encoded by using
the stabilized orbits with periods from 

 

τ

 

 = 

 

t

 

 = 0 + 2 = 2
to 

 

τ

 

 = 

 

t

 

 = 9 + 2 = 11. Thus, the conditions for the appli-
cability of the method are fulfilled (see Section 3) if the
parameters are calculated with an error 
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. In practice, owing to the inaccuracy of the
parameter calculation, the exit condition 
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 is substituted for inequality 

 

|

 

x

 

c

 

 – 

 

f

 

(

 

x

 

k

 

, 

 

a

 

k

 

)

 

|

 

 

 

≤

 

 

 

δ

 

x

 

.
The intermediate points of a orbit 
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 are chosen
to satisfy the condition 
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], 
 

i
 

 = 2, …, 
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.
The results of encryption are presented in Figs. 2

and 3. Figure 2 shows four different parameter
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sequences encoding the word 

 

CHAOS.

 

 Figure 3 depicts
the parameter sequence encoding the text string of ten
symbols

 

 cccccccccc.

 

The proposed method can be combined successfully
with the keyboard entry of text messages and easily
adapted to any other PC operating system.

CONCLUSIONS

A new effective method is developed for hidden
transmission of information encoded by preassigned
stabilized orbits of 1D maps. The proposed method
bears a partial resemblance to a well-known encryption
method that uses a preassigned text source as the key in
which each letter of the secret message is located and
encoded by the numbers of the page, line, and column.
However, the use of maps with strong chaotic proper-
ties makes the encryption process much more reliable.
Furthermore, the capabilities of encryption based on a
preassigned text source are always restricted by the size
of the source, thereby allowing the decryption of infor-
mation. On the contrary, the use of chaotic maps offers
a theoretically infinite choice of the parameters.

In a particular implementation of the proposed
method, when a family of unimodal maps is specified,
it is possible to select perturbations that would stabilize
the orbit passing through previously given points. In
this case, the encoding, transmitting, and decoding of
information can be automated easily, which is a signif-
icant advantage of the method. In this study, the algo-
rithm is implemented on an IBM PC for the family of
quadratic maps used as an example.

The main advantages of the method proposed for the
hidden transmission of information include the fol-
lowing:

(i) A sufficiently wide class of maps, including mul-
tidimensional maps, may be used in practice.

(ii) No part of the information sequence itself
appears in the communication channel; it is only the sig-
nal required for further processing that is transmitted.

(iii) The transmitted signal exhibits a purely ran-
dom behavior, which provides for a high degree of
data security.

(iv) No preliminary synchronization between a
transmitter and a receiver is required.

(v) The method is stable against external interfer-
ences.

(vi) There is not only one signal sequence that may
be assigned to the input information. Theoretically, the
number of encoding variants is infinite.

Thus, (ii), (iii), and (iv) ensure a high degree of mes-
sage security during transmission and (i), (v), and (vi)
afford the widespread use of the method proposed.
Moreover, since each symbol of a transmitted data
sequence is associated with an entire region in the space
of parameters, this method can be employed in the
design of noise-immune information-processing sys-
tems.

The practical implementation of the hidden-trans-
mission method also seems possible since the family of
unimodal maps is readily modeled by means of stan-
dard electronic components. Thus, an operable inte-
grated circuit (a chip) can be designed for practical pur-
poses.
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