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Abstract. A new original method of information processing and secure communications based
on the coding of alphabet symbols by stabilized cycles of certain perturbed one-dimensional
dynamical systems is proposed. The foundation of the proposed method is ciphering by the
one-to-one correspondence between periods of such cycles and certain alphabet symbols. It
is shown that for some maps perturbations which lead to the stabilization of cycles of the
given period, form some domain in the parametric space. This fact is used for coding identical
symbols via random selection of parameters from this domain, that ensures that the probability
of decoding the transmitting information by an external observer is zero. Analytic estimations
of the admissible noise level in the communication channel and the randomness degree of
transmitting signals are made. Some variants of the ciphered sequences are presented.

1. Introduction
In the present stage of the development of communication technologies, the problem of protecting
information is most important. We propose an original method of data encoding, which makes
use of the possibility of stabilizing the cycles of chaotic maps. This possibility is based on the well
known fact form the theory of dynamical systems [1, 2, 3] (see also [4, 5] and references therein):
there exist periodic perturbations of the chaotic dynamical systems belonging to general types,
which lead to stabilization of the cycle with a given period. Although data encoding by means
of chaotic systems is now very popular (see, e.g., [6, 7, 8, 9, 10, 11] and references therein),
the proposed method is advantageous in allowing a network application to be developed for
exchanging messages without preliminary synchronization of the transmitter and receiver (which
is usually necessary in other approaches). Moreover, programs to be developed in the nearest
future will allow sound messages to be encoded as well.

We develop an analytic approach to a parametric (multiplicative) non-feedback method of
the stabilization of the prescribed orbits of dynamical systems. In the contrast to the well-
known methods of the feedback controlling the behavior, the described rigorous results look more
suitable for applications because they does not require a real-time computer analysis of the state
of the system, and it is more robust to noise. On the basis of the theory we develop a new original
method for secure communications. The basis of this method is a one-to-one correspondence
between periods of stabilized cycles and certain alphabet symbols. As a transmitted signal, the
corresponding periodic perturbations are used, and a key for the decoding of the received signal
is a form of the dynamical system (i.e. the function describing this system).
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2. Stabilization of cycles
In order to explain the proposed principle of data encoding, we will first describe the main
theoretical result concerning the stabilization of cycles. Consider a map of some region M and
Rj into itself:

Ta : x �−→ f(x, a) , (1)

where a is a parameters from the manifold of possible values A ⊂ R, x = {x1, . . . , xj} and
f = {f1, . . . , fj}. Let us introduce the concept of parametric perturbation. The most natural
way of doing this is to define a map with respect to parameter a , which would determine its
value at each moment of time, G : A → A, a → q(a). A perturbation will be called periodic
with a period of τ , provided that the function g(a) is defined only in τ points a1, . . . , aτ in the
following manner: ai+1 = g(ai), i = 1, . . . , τ − 1 and a1 = g(aτ ).

In this case, the set of perturbations with period τ can be brought into correspondence
with manifold A = {â ∈ A ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸

τ times

: â = (a1, . . . , aτ ), ai �= aj , 1 ≤ i, j ≤ τ, i �= j,

a1, . . . , aτ ∈ A}, A ⊂ Rτ . Let us introduce a submanifold Ac ⊂ A corresponding to only the
chaotic behavior of map (1). In some papers (see, e.g., [2, 12, 13, 14, 15]), it was proved that,
for j = 1 and j = 2, there exist perturbations â = (a1, a2, ..., aτ ) such that, for â ∈ Ac (or
g(a) ∈ Ac ), a perturbed map will be regular with a stable cycle of period t = τn . Moreover,
the following exact result is valid for onedimensional maps ( j = 1) [5].

Let a map Ta : x �−→ f(x, a), x ∈ M , a ∈ A to obey the conditions: (i) there exists a
submanifold σ ⊂ M such that, for any x1, x2 ∈ σ, there can be found a∗ ∈ A for which f(x1, a

∗) =
x2 and (ii) there exists a critical point xc ∈ σ such that ∂f(x, a)/∂x|x=xc ≡ Dxf(xc, a) = 0 for
any a ∈ A. Then, for any x2, x3, ..., xτ ∈ σ, there can be found x1 and a1, a2, ..., aτ such that
the cycle (x1, x2, ..., xτ ) will be a stable cycle of perturbed map Ta for â = (a1, a2, ..., aτ ).

3. The encoding method
For data encoding, it is necessary to develop a method for evaluating the permissible noise level
(see [15]). This can be readily done as follows [5]. Let the perturbed map Ta for â = (a1, a2, ..., aτ )
to have a stable cycle of period τ , p = (x1, x2, ..., xτ ). Then, provided that

|∆ai| ≤ δa = 1
/ (

τAaLSτ−1
x

τ∑
i=1

Si
x

)
,

where i = 1, 2, . . . , τ ; Sa = |Daf(x, a)|; L = max
x,a

|D2
xf(x, a)|; and Sx = max

x,a
|Dxf(x, a)|.

This map also has a stable cycle, p′ = (x1 + ∆x1, x2 + ∆x2, . . . , xτ + ∆xτ ) of period τ for
â′ = (a1 + ∆a1, a2 + ∆a2, . . . , aτ + ∆aτ ), where |∆xi| ≤ δx = 1

/
LSτ−1

x .
In the first step of encoding, it is necessary to obtain the ASCII codes of all symbols involved

in the text to be encoded. As is known, each symbol in the ASCII system corresponds to a
unique triad of integers. For example, Latin letter a corresponds to the ASCII code 97 with the
triad n1 = 0, n2 = 9, n3 = 7. Then, each member of a triad is interpreted as the period of a cycle
inherent in a dynamical system. In order to avoid degenerate cycles (period 0) and stable cycles
(period 1), we add 2 to each ni (i = 1, 2, 3). Now, using the chaotic properties of an applied
map (or the random number generator), we create a sequence with a length equal to the sum of
all ni (increased by 2) plus 1. The last element is used for beginning the count of cycle periods.

The obtained sequence of random numbers is considered as the sequence of values of the
dynamical variable x. For this sequence to bear information concerning the encoded symbols,
we replace a part of elements by the values of critical points xc, that is, the points where
f ′(a, x)|xc = 0. These points are separated by ni + 2 steps beginning with the first. Thus, the
sequence consists of subsequences, the number of which is equal to the number of members in
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the sequence (ni + 2), that is, to the number of symbols in the coded text multiplied by three.
The periods of cycle will be equal to ni + 2.

Now let us calculate the values of the control parameter â = a1, . . . , an, that is, determine the
perturbation stabilizing the obtained sequence of cycles. This can be readily done by considering
the inverse problem of determining the parameters from the form of the map. For particular
maps, perturbations â producing stabilization of the cycle of a given period form a certain region
in the parametric space. This circumstance can be used for encoding repeated symbols by means
of random selection of parameters from this region.

The main steps of the data encoding protocol using the proposed method are presented in
Table 1. The final sequence a1, . . . , cn3+2 (representing parameters rather than the message)
is sent to a transmitter, where all operations (with certain differences related to rounding) are
performed in the reverse order (the method is symmetric).

Table 1. The principle of encoding symbols and letter sequences for secure data transmission
{

Y
symbol

}
−→

{
n1, n2, n3

ASCII − codes

}
−→

−→
{ {a1, . . . ,an1+2}, {b1, . . . ,bn2+2}, {c1, . . . , cn3+2}

sets of parameters

}
−→

{
a1, . . . , cn3+2

seq. of numbers

}

4. Justifications
In order to justify the proposed method, it is necessary to perform a statistical correlation
analysis and evaluate the cryptographic stability [16]. The statistical analysis was performed
using a sequence of 900 values of the control parameters, encoding a message consisting of 1000
Latin letter o symbols. The transmission of this symbol represents the most dangerous regime of
operation of the proposed method, since the ASCII code of this symbol is 111 and the information
about each o is contained in the three sequential cycles of period ni + 2 = 1 + 2 = 3, whose
repetition is highly undesired. Satisfactory results obtained in this particular case will provide
evidence of even greater reliability of the proposed method in the case of encoding other symbols.
The statistical analysis gave the following results: correlation coefficient, r = 0.0077; regression
equation, y = 4.9322905 + 0.00769911509x; the average value in the set, x = 4.96478169.
Therefore, the proposed method of data encoding is highly reliable from the standpoint of
correlation analysis and is capable of protecting data messages of considerable length.

The main qualitative measures of cryptographic stability of an encrypting system are the
laboriousness and reliability of the cryptographic analysis [17, 18]. We have evaluated the
cryptographic stability of the proposed data encoding protocol by method of total probing,
which consists in sequential random and equiprobable trial of N keys without repeats from
manifold K.

Table 2. Results of evaluation of the laboriousness of decoding.

Byte/coefficient |K| Eα,β t(|E|)

1 227 226 67 s
2 251 250 30 years
3 275 274 6 ∗ 108 years
4 299 298 1016 years
5 2123 2122 1, 5 ∗ 1023 years
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Note: the left column indicates the number of bytes intended for encoding the control
parameter; the right column shows the laboriousness of decoding converted into time assuming
the computation speed to be equal to that of modern supercomputers.

The process of probing is terminated upon testing k keys, where k = j, 1 < j < N , j
being the first key number for which the decoded text is considered substantially meaningful,
or k = N if this event does not take place for j ≤ N . The decoded text is assessed for
meaningfulness using the following hypotheses: H(0) for the open text and H(1) for a random
text. In formulating a probabilistic model, the assessment procedure is characterized by the
following errors: α = P (H(1)/H(0)), the probability of rejecting a meaningful text, and
β = P (H(0)/H(1)), the probability of taking a meaningless text as meaningful. A model
for calculation of the laboriousness of the cryptographic analysis can be formulated as

Eα,β(|K|) =
1
|K|

r∑
k=1

k(1 − β)k−1[β(r − k) +
αβ

1 − β
(k − 1) + (1 − α)] +

r

|K|rα(1 − β)r−1 +

+
|K| − r

|K| (
r∑

k=1

k(1 − β)k−1β + r(1 − β)r)

where Eα,β(|K|) is the mathematical expectation characterizing termination of the probing
process after probing k keys and N is the number of probed keys. The results of calculations
performed assuming errorless mechanism of taking decisions (α = 0, β = 0) are summarized in
Table 2. The reliability was evaluated using the relation

P (r, α, β) =
1 − α

|K|
r∑

t=1

(1 − β)t−1

Obviously, reliability of the method of total probing assuming errorless mechanism of taking
decisions (α= 0, β= 0) is P = 1.

5. Comparison with the other methods
For the comparison analysis we used the following methods: RSA, DES [17, 18]. RSA is a
cryptographic system with an open key. Its main advantage is a high level strength, but RSA
has also the weakness: low productiveness. DES (Data Encryption Standard) is much more
fast method (in some cases ∼ 104 order). DES is a block encryption method developed by
IBM and US Government used as a standard ANSI (American National Standard Institute).
Its advantage is the high productiveness. At the same time it has a grave disadvantage: a low
system safety. Thus, using this methods it is necessary to change very often the key.

The expected productiveness of the hardware of the proposed method (based on the stabilized
cycles) is 10 − 60Kb/s that is almost the same as for the productiveness of DES. The middle
length key for our method is 100b, that is also comparable with DES. In addition, this method is
symmetrical with respect to the key (i.e. data is coding and decoding by one and the same key).
DES is also symmetrical method, but RSA is asymmetric one (that is, for the decoding the other
key is used). That is the reason why it is difficult correctly to compare by this way, because the
analysis of the cryptostability is different for symmetric and asymmetric methods. In the other
words, qualitative and quantitative estimations of symmetric and asymmetric methods, strictly
speaking, is not equivalent. However, it is accepted as correct that the symmetric cryptographic
method are more safe.

If our theoretical analysis will be verified in practice (to this end it is necessary to make a deep
and careful expertise) then this methods can be considered as a competitive product. Among
forward-looking applications we may propose audio encryption (say, in the mobile devices),
electronic digital signatures and safety of messages sending by e-mail.
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6. Conclusion
In the present paper, a new original method of information processing and secure
communications by stabilizing prescribed orbits of one-dimensional dynamical systems is
proposed. Using in applications some family of polymodal maps, one can develop a quite efficient
scenario for the search of perturbations which lead to the stabilization of orbits passing through
the given points. In this case it is easy to automatize the coding, transmission and decoding
procedures, that is an essential merit of the described method.

This scenario is realized by IBM-PC computer on the example of quadratic family maps. The
main advantages of the proposed method are the following.

1. For its realization one can use a sufficiently large class of dynamical systems.
2. During communication the information sequence is not translated. Only signals which are

necessary for the further information processing are sent.
3. Transmitting signal has a purely random character, that give a high level of the security.
4. Decoding is realized without predetermined synchronization of the transmitter and the

receiver.
5. The method is stable with respect to an external noise.
6. Theoretically, the number of variants of the coding of one and the same transmitting

sequence is infinite.
7. For every concrete application it is possible to estimate the admissible noise level in the

communication channel.
Thus, points 2, 3, 4 provide a quite high security of the communication; points 1, 5, 6, 7 give

a considerable opportunity in applications.
Because the proposed method is based on the rigorous mathematics, it is quite possible to

construct some device for real secure communication. It can be produced in the two following
forms. (A) As a software for some system for secure communication; (B) As an analog system
with certain properties. For example, this can be a radio physical circuit with nonlinear (active)
elements. But this is the subject of the further investigations.
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