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By means of a thermodynamic approach we analyze billiards in the form of the Lorentz gas with
the open horizon. For periodic and stochastic oscillations of the scatterers, the average velocity
of the particle ensemble as a function of time is analytically obtained. It is shown that the
consequence of such oscillations is Fermi acceleration which is larger for periodic oscillations.
The described results do not depend on the size of scatterers and their position. Only the
property of the horizon openness is necessary. It is found that the developed thermodynamic
approach is in a very good agreement with the results of the direct numerical simulations at
which the corresponding billiard map is used.
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1. Introduction

The classical billiard symbolizes a dynamical sys-
tem where the point particle (billiard ball) reflects
elastically from the boundaries of some closed
region and performs free straight motion between
reflections. Thus, the billiard particle moves along
geodesic lines with a constant velocity. In the
present paper we consider billiards in Euclidean
plane. In this case, the angle of incidence of the
particle is always equal to the angle of reflection.

A natural extension of billiard systems is to
consider models for which the boundary is not
fixed, but it oscillates with time. From the phys-
ical point of view such a generalized billiard con-
sisting of many particles describes the rarefied gas
in a container, the walls of which vibrate with a
small amplitude. For billiards with the perturbed
boundaries their dynamical properties are very
essential. If it exhibits chaotic dynamics then per-
turbations of the boundary may lead to the infi-
nite growth of the particle velocity. This problem is

related to the unbounded increase of energy in peri-
odically forced Hamiltonian systems and is known
as the Fermi acceleration [Fermi, 1949; Ulam, 1961].

For the first time, to explain the origin of high-
energy cosmic particles Fermi [1949] proposed the
mechanism of the particle acceleration by means
of collisions with moving massive scatterers. Later
various models (the Fermi–Ulam model and oth-
ers, see, e.g. [Brahic, 1971; Lichtenberg & Lieber-
man, 1990; Lichtenberg et al., 1980; Pustyl’nikov,
1987, 1994, 1995; Pustyl’nikov et al., 1995; Ulam,
1961; Zaslavsky, 1970]) have been developed which
explained this phenomenon to a certain extent.

Billiards with perturbed boundaries can be con-
sidered as a certain generalization of such models.
For example, in the papers [Koiller et al., 1995;
Koiller et al., 1996] elliptic billiards have been
numerically considered. The authors have come to
the conclusion that, as in the Fermi–Ulam model,
the growth of the particle velocity is bounded by
invariant curves. Applying the dynamical approach
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(i.e. using the corresponding billiard dynamical sys-
tems) the Fermi acceleration has been analyzed on
the example of the Lorentz gas and stadium-like
billiards [Loskutov et al., 1999, 2000; Loskutov &
Ryabov, 2002]. Stadium-like billiards are defined as
a closed domain with the boundary consisting of two
focusing curves connected by the two parallel lines.
It was found that in billiards with chaotic properties
there is a linear growth of the particle velocity with
time. However, for a nearly rectangle stadium with
periodically oscillated boundary a new interesting
phenomena is observed. Depending on the initial
values, the particle ensemble can be accelerated, or
its velocity will not grow, i.e. there is lack of the
Fermi acceleration. This means that the boundary
perturbation leads to the separation of the particle
ensemble in velocities.

In these papers the following conjecture has
been advanced: chaotic dynamics of a billiard with
a fixed boundary is a sufficient condition for the
Fermi acceleration in the system when a boundary
perturbation is introduced. In papers [de Carvalho
et al., 2006; Karlis et al., 2006] (see also references
therein) the validity of this conjecture has been con-
firmed on the examples of some billiards of specific
forms. Recently, more deep insight into the prob-
lem of the Fermi acceleration has been presented
[Kamphorst et al., 2007].

As it is known, the periodic Lorentz gas (with
the fixed boundary) with the open horizon is a bil-
liard which has strong chaotic properties (ergodic-
ity, mixing, decay of correlations, etc.). This allows
us to use a qualitative different method and apply
a thermodynamic analysis to the system (see, e.g.
[Kozlov, 2000, 2004; Chernov et al., 1993; Bonetto
et al., 2002; Moran et al., 1987]). Using such an
approach one comes to the conclusion that the
obtained results should not depend on the billiard
geometry, i.e. on the size, curvature and dispositions
of scatterers. The unique condition is the limited-
ness of the mean free path of the billiard particle,
i.e. the Lorentz gas should possesses the bounded
or the open horizon.

It should be noted that for the detailed analysis
of such a complicated system as billiards it is nec-
essary to use several approaches: dynamical, ther-
modynamical and computer simulations. The first
method gives the exact description of some prop-
erties of the corresponding dynamical systems. The
thermodynamical way, on the basis of a quite sim-
ple semi-phenomenological model, allows us to get
the most general ideas about the system.

In the present paper, on the example of the
Lorentz gas with the open horizon and time-
dependent periodically and stochastically oscil-
lating scatterers (i.e. the billiard boundary), we
develop the thermodynamic approach to the
description of such a system. We show that for
both cases there is a Fermi acceleration. Thus, we
support the above described conjecture advanced
in papers [Loskutov et al., 1999, 2000] about the
Fermi acceleration in billiards with the perturbed
boundaries.

2. The Lorentz Gas

A periodic Lorentz gas is a system containing a set
of heavy discs (scatterers) with radius R embedded
at sites of an infinite lattice with period a. Particles
move freely among these discs. The billiard table
in such a configuration is the whole plane except
for the scatterers. Because particles do not interact
with each other, then it is sufficient to consider only
one particle. In Fig. 1 one can see a variant of the
Lorentz gas in the periodic triangle lattice [Buni-
movich & Sinai, 1981; Hakmi et al., 1995; Machta
& Zwanzig, 1983].

Depending on the radius R of the scatterers,
this model possesses qualitatively different proper-
ties. If R ≤ a/2 then the system has an infinite hori-
zon. If R ≥ a/

√
3, then the particle path is bounded

by only one cell. When a/2 < R < a/
√

3 the free
path of the particle is bounded, but it may move

Fig. 1. Configuration of Lorentz gas model. The scatterers
(circles of radius R) are located at sites of a lattice with
period a.
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freely in the billiard table. In this case the Lorentz
gas has the open horizon.

For the infinite horizon, owing to the probabil-
ity of long free paths, the statistical properties of
a billiard are qualitatively changed. In particular,
the mean free path does not converge, and there
is an algebraic correlation decay with time [Bald-
win, 1991; Bunimovich, 1985; Bunimovich & Sinai,
1981; Chernov, 1997; Garrido, 1997]. At the same
time, for the Lorentz gas with the bounded hori-
zon and the open horizon an exponential decay of
correlations takes place, and the mean free path can
be obtained as follows [Chernov, 1997]:

λ =
πΩ
P

, (1)

where Ω is the accessible billiard region and P is
the scatterer perimeter.

Suppose that the radii of the scatterers are
perturbed by a certain law, i.e. their boundaries
are changed in such a way that R(t) = R + r(t),
where max |r(t)| � R. We will analyze two differ-
ent cases: stochastic and periodic (and in-phase)
boundary oscillations. In the first case we assume
that the phase of oscillations (and, as a conse-
quence, the velocity of scatterer boundaries) at the
collision time is a random value. The latter case
corresponds to the situation when all the bound-
aries are perturbed by one and the same law and
in the same phase. Physically this may be consid-
ered as an introduction of an external alternating
field.

3. Stochastic Perturbations

To construct a thermodynamic model correspond-
ing to a billiard with oscillating walls, it is logi-
cal to consider a number of identical particles with
the mass m. In this case scatterers should be pre-
sented as heavy conglomerates consisting of the
same rigidly connected particles. The boundary of
such scatterers consists of N particles. Then col-
lision of the moving particle with a scatterer may
be described as the collision with one of the parti-
cles forming this scatterer. Also, this collision has
a sense of the interaction of two thermodynamic
subsystems (i.e. the moving particles and the fixed
particles in scatterers) having their own tempera-
tures. Then the interaction area S will correspond
to a collision region and may be defined as the scat-
terer perimeter divided by N . It is obvious that the
parameters m, S and N should not appear in the
final result.

To compare our thermodynamical analysis with
the known dynamical models [Loskutov et al.,
2000], we consider the Lorentz gas in a triangular
lattice (Fig. 1). However, the proposed approach is
much wider, and it can be applied to the description
of the other types of billiards (see below).

It is well known that in the Lorentz gas with
the open horizon the particle motion is stochastic.
Therefore, the temperature of these particles can be
associated with their average kinetic energy. The
Hamiltonian of such a system corresponding to a
single particle with the mass m is

H =
p2

x

2m
+

p2
y

2m
+ U(qx, qy),

where U is the energy of interaction with scatterers
which fill area L = πR2 such that U(qx, qy /∈ L) = 0,
U(qx, qy ∈L) = ∞. For the two-dimensional motion,
using the known result on the energy distribution
into degrees of freedom, we get the expression for
the particle energy:〈

p2

2m

〉
=

〈
mv2

2

〉
= kT. (2)

By the same manner, the temperature of the
scatterers can be determined by means of the
kinetic energy of their motion, i.e.

M〈u2〉
2

=
Mu2

0

4
= kTR. (3)

At u0 	= 0 this temperature turns out to be infinite,
TR = ∞, because we consider the model with scat-
terers of the infinite mass, M = mN → ∞. The
conclusion about the infinite mass directly follows
from the main assumption related to the Lorentz
gas with the fixed scatterers: The angle of incidence
is equal to the angle of reflection, i.e. the absence of
recoil. Thus, the Fermi acceleration can be consid-
ered as a result of the heat exchange between the
particle as a thermodynamic system and thermostat
of the infinite temperature.

3.1. The heat conductivity equation

The heat flow from scatterers may be defined by the
temperature gradient. Therefore, the heat conduc-
tivity equation can be written as follows:

∂Q

∂t
= −κS

∂T

∂x
, (4)

where κ is a heat conductivity coefficient, S is a heat
transfer area (the temperature gradient should be
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taken along the normal to this area). For the two-
dimensional Lorentz gas this area S is defined as a
collision area of the free particle and the scatterer
boundary.

On the other hand, the heat flow can be
expressed by the change of the particle energy:

∂Q

∂t
= c

∂T

∂t
=

c

k

∂

∂t

〈
mv2

2

〉
, (5)

where c is the heat capacity of the particle gas. In
this case this parameter is equal to the Boltzmann
constant k because the total input heat is trans-
formed into the energy of the two-dimensional
particle motion, i.e. into the temperature (see
expression (2)). For such a process in the ideal gas
the heat capacity is well known and defined by the
expression c = (i/2)kNp, where Np = 1 is the num-
ber of moving particles, i = 2 is the number of
degrees of freedom.

Let us find the explicit form of the right-hand
side of Eq. (4). On the one hand, the effective tem-
perature gradient between the particle and scatter-
ers turns out to be infinite, |∂T/∂x| → ∞, because
TR = ∞. However, on the other hand, as a conse-
quence of point collisions the interaction area tends
to zero, S → 0. Thus, there is an indeterminate
form 0 · ∞ which we can evaluate as follows.

It is obvious that N → ∞. Then the interac-
tion area corresponds to the particle size and can
be written as

S =
2πR

N
. (6)

The temperature gradient in Eq. (4) one can
approximately write as ∂T/∂x ≈ ∆T/∆x, where
∆x is the distance where there is a temperature dif-
ference, and ∆T is the difference in the temperature
between the scatterer and the particle gas. In turn,
∆x we may approximately write as the free path:
∆x ≈ λx = λ〈vx〉/〈v〉 = πλ/4. For ∆T , taking into
account the infinite temperature of scatterers, we
get: −∆T = TR − T ≈ TR = mNu2

0/4k. Thus, eval-
uating an indeterminate form on the right-hand side
of (4), finally we get:

−S
∂T

∂x
≈ 2Ru2

0m

λk
. (7)

The heat conductivity coefficient can be intro-
duced in a usual manner:

κ = cDn, (8)

where n = 1/Ω is a particle concentration, Ω
is the area of the free space in the cell, D is

two-dimensional diffusion coefficient along the nor-
mal to the scatterer boundary, c is the heat capac-
ity. This diffusion coefficient can be written in
the form

D =
〈v2

x〉τ
2

=
〈v2〉τ

3
, (9)

where τ = λ/〈v〉 is the free path time. The free path
λ may be presented as (see expression (1)):

λ =
Ω
2R

. (10)

Thus, the heat conductivity of the system particle-
scatterers is determined as follows:

κ =
1
3
kn〈v2〉τ. (11)

By using Eqs. (7) and (11), the right-hand side of
Eq. (4) is presented in the form:

∆Q

∆t
=

u2
0mτ〈v2〉

3λ2
. (12)

Now, combining the right-hand sides of Eqs. (5) and
(12), we get:

d

dt
〈v2〉 =

2u2
0τ

3λ2
〈v2〉.

Taking into account that for the ideal gas
〈v2〉 = α〈v〉2, where α is a constant, we find the
following expression for the change of the particle
velocity in the Lorentz gas with the stochastically
perturbed scatterer boundaries:

d

dt
〈v〉 =

u2
0

3λ
. (13)

Thus, in the investigated system the Fermi acceler-
ation is observed, and for the large enough particle
velocity its average value grows as a linear function
of time. It should be noted that the obtained result
(13) is valid for the scattering billiard with an arbi-
trary shape of the boundary for which the free path
is bounded.

4. Periodic Boundary Oscillations

For periodic oscillations of the boundary it is nec-
essary to use another approach.

Let the boundary be perturbed in a regular
way such that its velocity is u = u0 cos ωt. In
this case one can say that we do the work A on
gas. Strictly speaking, the process is nonequilib-
rium, and the gas of billiard particles does not put
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pressure upon scatterers. However, we may consider
a small enough area nearby the scatterer and admit
that here the particle concentration n is constant.
Then the pressure is determined as [Chichigina
et al., 2003]: p(t) = mn(v+u0 cos ωt)2/2. As a result
of the scatterer motion the accessible billiard area
Ω (see (1)) is changed. This change is defined by
the scatterer velocity and the scatterer perimeter:
dV = 2πRu0 cos ωtdt. At that, the elementary work
may be written as follows:

dA = pdV = πRu0mn(v + u0 cos ωt)2 cos ωtdt.

Assuming that the particle concentration in this
chosen area is fixed and equal to n = (2Rλ)−1, we
get: dA = πu0m/2λ(v + u0 cos ωt)2 cos ωtdt.

This work expends on the increase of the inter-
nal energy. Now, taking the average over the period
of the scatterer oscillation and over the particle
velocities, we obtain the differential equation which
describes the change of the mean kinetic energy of
the particle:

d

dt

〈
mv2

2

〉
=

dAT

dt
=

πmu2
0〈v〉

2λ
.

Owing to 〈v2〉 = α〈v〉2, where α ∼ 1, the Fermi
acceleration for the case of periodic oscillations has
the following form:

d

dt
〈v〉 =

πu2
0

2λα
. (14)

Thus, periodic oscillations of the scatterers also
lead to the Fermi acceleration. However, in the
comparison with expression (13) the acceleration is
higher for the stochastic boundary oscillations.

5. Numerical Simulations

In this part we present numerical simulations and
compare them with the analytical results obtained
above. All the calculations have been made by
the dynamical approach, i.e. via the corresponding
maps describing the particle motion in the Lorentz
gas (Fig. 1) with the bounded horizon [Hakmi et al.,
1995; Loskutov et al., 2000].

Consider the Lorentz gas model with the fol-
lowing parameters: the amplitude of the boundary
oscillation of scatterers u0 = 0.01, the scatterer
radii R = 0.56, the cell size a = 1, the frequency
of boundary oscillations ω = 1, the initial velocity
v0 = 1. Thus, for the given billiard geometry the
analytical value of the free path is λ = 0.17.

Numerical realizations of particle trajectories
were different from each other in the initial direc-
tions of the particle velocity which were chosen
in a random way. Two qualitative different cases
were considered: stochastic oscillations of the scat-
terer boundaries with equidistributed phases and
periodic oscillations. In both cases, the particle
dynamics was determined by the map described in
[Loskutov et al., 2000].

In the stochastic case the oscillation velocity of
the boundary was defined as follows: un = u0 cos φn,
where φn is a uniformly distributed random value
over the interval [0, 2π]. For periodic oscillations
un = u0 cos ωtn, where tn is the instant of the nth
collision with the boundary. For each case, 5000
realizations of the trajectory of the billiard parti-
cle have been constructed. Dynamics of the particle
ensemble was simulated up to 3 ·105 time units, and
some trajectories (of the particles with high veloci-
ties) include up to 107 iterations.

The averaged dependencies of the particle
velocity for the stochastic vst and periodic vreg

boundary perturbations are shown in Fig. 2. In
this figure full lines correspond to the regular case,
and dotted lines correspond to the stochastic case.
Straight lines are analytical results (13) and (14).
As follows from this figure, the acceleration has a
linear character that is in good agreement with the
obtained analytical expressions. The results are the
same for other parameters of the Lorentz gas with
the open horizon.

Fig. 2. Average particle velocities as functions of time in
the Lorentz gas. The following parameters were used: u0 =
0.01, a = 1, R = 0.56 and v0 = 1. The average curve was
obtained on the basis of 5000 realizations of different direc-
tions of the initial velocity v0, which were selected in a ran-
dom way.
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6. Conclusion

The Lorentz gas is a widely recognized model of
the ideal rarefied gas. For the Lorentz gas with the
open horizon a number of its statistical proper-
ties is proved: mixing, exponential decay of cor-
relations, the existence of the diffusion coefficient
[Bunimovich & Sinai, 1981]. Thus, for the analysis
of the particle motion in this system one can use the
thermodynamical approach. In a certain sense, such
an approach is a universal one because in this case
the geometry (i.e. the disposition of the scatterers,
their forms, sizes and curvature) does not play an
essential role. A quite natural generalization of the
classical Lorentz gas is the system with oscillating
scatterers.

In the present paper, on the basis of the ther-
modynamical analysis we have shown that at the
scatterer perturbations of the Lorentz gas with
the open horizon the average velocity of the par-
ticle ensemble (for both, stochastic and periodic
oscillations) grows linearly with time (see (13),
(14)), i.e. the Fermi acceleration phenomenon is
observed. This confirms the conjecture advanced by
the authors of the papers [Loskutov et al., 1999,
2000] that chaotic dynamics of a billiard with a
fixed boundary is a sufficient condition for the
Fermi acceleration in the system when a bound-
ary perturbation is introduced. It is also found
and explained that the acceleration is higher in the
case of periodic oscillations than for the stochastic
perturbations.

The model proposed in the present paper and
based on the assumption that the scatterers con-
sist of an infinite number of particles of one and
the same kind, is not uniquely possible. But, nev-
ertheless, the results obtained on its basis are
in a very good agreement with the conclusions
which follow directly from the dynamical theory
of the lattice Lorentz gas (see [Bunimovich &
Sinai, 1981; Loskutov et al., 1999, 2000]). Also,
using this model one can obtain the value of the
Fermi acceleration for the arbitrary distributed
scatterers, scatterers of the arbitrary form and the
motion, and for three-dimensional Lorentz gas. The
unique claim here is the condition of the open
horizon. In addition, on the basis of the proposed
model one can easily explain the difference in the
results for the regular and stochastic motions of the
scatterers.

Namely, the Fermi acceleration is a dynamical
effect that appeared in the time-dependent Lorentz

gas. It is known that the transformation of the
heat energy into a mechanical form is restricted by
the second law of thermodynamics. In the case of
stochastic oscillations we have exactly this type of
the transformation. At the same time, the axiomatic
notion of the work (i.e. a mechanical form of the
energy transfer) used for the case of periodic scat-
terer oscillations, implies a straight energy transfer
from scatterers to moving particles.

Finally, we should emphasize that the principal
result of our paper is not the analytical expressions
for the Fermi acceleration. They are necessary for
the verification of the model premise. The main con-
clusion is that our approach allows to get results
for a quite wide class of the parameters of the
Lorentz gas.
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