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The restricted three-body problem on the example of a perturbed Sitnikov case is considered.
On the basis of the Melnikov method we study a possibility to stabilize the obtained chaotic
solutions by two bodies placed in the triangular Lagrange points. It is shown that in this case,
in addition to regular and chaotic solutions, there exist stabilized solutions.
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1. Introduction

Henri Poincaré in his work on Celestial Mechanics
underlined a possibility of chaotic behavior in three-
body problem by the destruction of homoclinic con-
tours. Later, an existence of transverse homoclinic
points in the three-body problem was analytically
verified. A well-known modification of the restricted
three-body problem is that of Sitnikov [1960].

The Sitnikov problem takes place when two
equal masses M orbit around their barycentre.
A third, massless or small but finite mass body
(particle) µ moves in their gravitational field per-
pendicular to the motion surface of the primaries
(see Fig. 1). It can be shown, that the oscillation of
the third body is chaotic (under certain additional
conditions). In this work we consider the problem
of stabilization of this chaotic behavior. In general,
this problem is related to stabilization and control
of unstable and chaotic behavior of dynamical sys-
tems by external forces. A comprehensive study of
chaotic systems with external controls may thus
provide a key to the understanding many nonlinear
processes in both localized and distributed systems.
This could be of interest, for example, in the study
of planetary systems of binary stars.
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Fig. 1. The Sitnikov problem.

2. Sitnikov Problem

With the proper time and space scaling we can write
the corresponding differential equation for the par-
ticle µ in the form

z̈ = − z

(z2 + ρ2)3/2
, (1)

where ρ = ρ(t) = 1+ ε cos t + O(ε2). Here the small
parameter ε is closely related to the eccentricity. To
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make clear how this problem is related to homoclin-
ical orbits, we introduce noncanonical transforma-
tion [Dankovicz & Holmes, 1995]: z = tan u, v = ż,
u ∈ [−π/2, π/2], v ∈ R. Then the Hamiltonian for
Eq. (1) in the new variables (u, v) has the form:

H(u, v) =
1
2
v2 − 1

tan2 u + ρ2

= H0(u, v) + H1(u, v, t, ε), (2)

where H0(u, v) = 1/2v2−cos u. As we can see, when
ε = 0 our system reveals the dynamics of a non-
linear pendulum, which oscillates with increasing
amplitude in time. If ε �= 0 then the system (1)
exhibits chaotic properties [Dankovicz & Holmes,
1995].

3. Stabilization of Chaotic Behavior

As follows from the work of V. M. Alekseev [2001]
one can find one-to-one correspondence between the
collinear solutions set of the Sitnikov problem and
the symbolic set Ω: v−in1 | . . . mn−1in−1mninmn+1

in+1 . . . |v+, where mn1, n1 < n < n2 are natural
numbers ≥ N , in = 0 or 1, v± ∈ [0, δ], n1 < 0 ≤ n2.
The number of collinear configurations on the solu-
tion set is defined by in. Symbol mn indicates the
number of total rotations of the mass M bodies
between (n − 1)-th and nth system collinear con-
figuration. Therefore, we may choose mn such that
our system oscillates slowly nearby its origin (when
ε = 0). At ε �= 0 (a perturbed chaotic nonlinear
pendulum) there are transverse homoclinic points.

To clarify the sense of this statement, let us
consider a symbolic sequence [Alekseev, 2001]:

ν−0N11N10 . . . 1N10N20 . . . N20N11N10N11ν+

↑ ↑ ↑︸ ︷︷ ︸
2k1 times

↑ ↑︸ ︷︷ ︸
2k2 times

This sequence can be interpreted in the follow-
ing manner. A spacecraft µ which arrived at a
binary star system from infinity with velocity ν−,
first came to the nearly periodic orbit with period
4πN1. In this orbit, it made k1 complete oscilla-
tions. During each of these oscillations, the space-
craft returned twice to the mass centre of the binary
star in the moments of maximal and minimal dis-
tances between the components of the binary star.
Then the spacecraft moved to another nearly peri-
odic orbit with period 4πN2. Here it made k2 com-
plete oscillations. Each of the 2k2 spacecraft returns
to the mass centre takes place in moments of the
minimal distance between the components of the
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Fig. 2. Stabilization of particle’s chaotic behavior.

binary star. Finally, having returned to the initial
orbit, the spacecraft µ made one and half oscillation
near this orbit. Then it moved away to infinity with
velocity ν+ following the same direction from which
it came initially.

Now, placing two new bodies of the mass m
(here M � m � µ) in the Lagrange points L4 and
L5 we can achieve the situation when the influence
of these bodies on the mass µ has a form of period-
ical (forced) impulses (the trajectories of bodies of
mass m are shown in Fig. 2). Therefore, this may
be treated as a nonlinear perturbed pendulum with
a specific external force.

Earlier it has been shown [Loskutov & Dzha-
noev, 2004] that using Melnikov method, we can
obtain the stabilized dynamics for µ. In this case,
duration time τ of these impulses should be much
less than the characteristic time T of the system,
i.e. τ � T and τ → 0. Thus, the stabilized system
has the following form:

H(u, v) = H0(u, v)

+ ε

[
H1(u, v, t) +

∑
n

δ(t − nτ)

]
. (3)

Between pulses the motion of the particle µ is free.
Then, speaking in terms of celestial mechanics, our
system undergoes the influence of some exterior
celestial bodies (say, two spacecrafts) which orbit
near the third body (particle).

4. Numerical Results

The onset of chaos in dynamics of the mass µ
in three-body system (Fig. 1) corresponds to the
breakdown of a heteroclinic trajectory. Figure 3
illustrates the structure of a typical chaotic set
obtained in this case. In Fig. 4, numerical solutions
of the system with Hamiltonian (3) is shown. It is
clear that the dynamics of the particle µ tends to
a regular regime represented by a periodic orbit.
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Fig. 3. Numerical solution to system with Hamiltonian (2).

Fig. 4. Numerical solution to system with Hamiltonian (3).
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The analysis of invariant characteristics of chaotic-
ity (Lyapunov exponents, power spectra, etc.) con-
firms this conclusion.

5. Concluding Remarks

Separatrix splitting is a very convenient method for
examining dynamical systems behavior, because it
can be used to obtain nonintegrability conditions
for many applied problems in an analytical form.
As a result, the distance between the splitting sep-
aratrices can be found by applying a perturbation
method in the vicinity of a homoclinic trajectory. In
this study, separatrix splitting is applied to explore
the possibility of chaos suppression (stabilization)
[Alekseev & Loskutov, 1987; Ott et al., 1990] in the
perturbed restricted three-body problem (so-called
Sintikov case). On the basis of the Melnikov
method, it is found that stabilization of chaotic
solutions can be obtained by placing two bodies in

the triangular Lagrange points. It is shown that in
this case, in addition to regular and chaotic solu-
tions, there exist zones of the stabilized behavior.
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