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The model of the cardiac tissue as a conductive system with two interacting pacemakers and a
refractory time is proposed. In the parametric space of the model the phase locking areas are
investigated in detail. The obtained results make possible to predict the behavior of excitable
systems with two pacemakers, depending on the type and intensity of their interaction and
the initial phase. Comparison of the described phenomena with intrinsic pathologies of cardiac
rhythms is given.
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1. Introduction

One of the remarkable examples of excitable me-
dia is the cardiac tissue. Because the stability of its
behavior is vitally important, investigations of pro-
cesses occurring in the cardiac muscle attract a con-
siderable scientific interest. Owing to extraordinary
complexity of the system, many alternative models
have been tested. One of them treats the cardiac
tissue as an active conductive system. Then, the
cardiac rhythms are described on the basis of the
dynamical system theory (see e.g. [Courtemanche
et al., 1989; Goldberger, 1990; Bub & Glass, 1994;
Glass et al., 2002] and refs. therein).

Excitation waves in the cardiac tissue originate
in the sinoatrial node (SA) and spread successively
over the right atrium and the left atrium. Then they
pass through the atrioventricular node (AV), bun-
dle of His and Purkinje fibers, and finally to the
walls of the right and left ventricles. The normal
rhythm of the heart is determined by the activity
of the SA node which is called the leading pace-
maker (a source of concentric excitation waves) or
the first order driver of the rhythm. In addition to
the SA node cells, the other parts of the cardiac

conductive system can reveal automaticity. So, the
second order driver of the rhythm is located in the
AV conjunction. The Purkinje fibers are the rhythm
driver of the third order.

Often arrhythmia is the disturbance of the nor-
mal heartbeat caused by several propagation fail-
ures [Keener, 2000; Lewis & Keener, 2000]. In par-
ticular, arrhythmias can be evoked by the violation
of the restitution of the cardiac tissue (so-called the
reentry phenomenon) (see e.g. [Panfilov & Keener,
1995; Biktashev & Holden, 1998; Cytrynbaum &
Keener, 2002; Glass et al., 2002] and refs. therein).

In addition to such pathologies, the dis-
turbances of the cardiac rhythms are induced
by the appearance of ectopic excitation sources
[Schamorth, 1980; Marriot & Conover, 1983; Zipes
& Jalife, 1995; Winfree, 1987; Glass & Mackey,
1988]. Furthermore, a few abnormal sources and spi-
ral waves result in a fibrillation phenomenon (in
fact, a spatio-temporal cardiac chaos [Qu et al.,
1997; Qu et al., 2000]). In this case it is necessary
to involve the application of a high energy electric
shock. A number of recent clinical studies aim at
the improvement of defibrillation protocols in order
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to minimize failure rates and reduce the amount of
energy used and thus damage risk [Zipes & Jalife,
1995]. Recent studies provide a theoretical under-
standing of the underlying mechanisms of defibril-
lation [Krinsky & Pumir, 1998; Pumir et al., 1998;
Panfilov et al., 2000].

When arrhythmias are presented via inter-
action of the pacemaker and the ectopic source
(i.e. the reciprocal action of nonlinear sources), in-
vestigation of such cardiac pathologies can be sub-
divided into two large groups: First is based on
the continuous time representations (i.e. using sys-
tems of ordinary differential equations) [van der Pol
& van der Mark, 1928; Keener, 1981; Guevara &
Glass, 1982; Hoppensteadt & Keener, 1982; Keener
& Glass, 1984; Keith & Rand, 1984; West et al.,
1985; Signorini et al., 1998] (and refs. therein), sec-
ond — on the maps representation [Moe et al., 1977;
Jalife et al., 1982; Honerkamp, 1983; Ikeda et al.,
1983; Glass & Mackey, 1988; Courtemanche et al.,
1989; He et al., 1992; Bub & Glass, 1994; Kremmy-
das et al., 1996; Ostborn et al., 2001].

Since arrhythmias are dangerous heart diseases,
investigation of such pathologies is of great impor-
tance. Moreover, analysis of the complex cardiac
rhythms, treated as chaotic phenomena, can give
a clue to the problem of controllability of the com-
plex cardiac dynamics [Goldberger & Rigney, 1988;
Goldberger, 1990; Garfinkel et al., 1992].

In the present investigation, a general model of
two nonlinear coupled oscillators describing certain
types of cardiac arrhythmias (AV-blocks and para-
sistoles) is elaborated. The model occurs to be a
universal in the sense that its predictions are not
sensitive to the specific form of interactions, i.e. on
the phase response curve (PRC). The experimen-
tally obtained PRC is approximated by a certain
polynomial function with a plateau. This plateau
models the refractory stage when the system does
not respond to an external action. Note that the
refractory stage plays an important role in the nor-
mal cardiac functioning. For example, the refrac-
toriness extends almost over the period of the car-
diac contraction, protecting the myocardium from
premature heartbeats caused by the external per-
turbation. The refractoriness provides also the nor-
mal sequence of an excitation propagation in the
cardiac tissue and the electrical stability of the my-
ocardium [Marriot & Conover, 1983; Zipes & Jalife,
1995; Winfree, 1987; Glass & Mackey, 1988]. In the
proposed model, possible areas of phase lockings,

caused by the refractoriness, are investigated. We
observe the splitting of the resonance tongues and
the superposition of the synchronization areas. Us-
ing the obtained results we can classify the dynam-
ics of the excitable media with two active pacemak-
ers depending on the type and intensity of their in-
teraction and the initial phase difference. Moreover,
generalizing our approach a theory of excitable me-
dia with interacting pacemakers under external ac-
tions may be elaborated. This fact can be of a great
practical importance due to possible application in
controlling the cardiac rhythms by external stimuli.

2. Heart Tissue as a

Dynamical System

The cardiac arrhythmias may be described some-
times as an interaction of two spontaneously oscil-
lating nonlinear sources. Such interaction can be an-
alyzed in terms of influence of an external periodic
perturbation (with a constant amplitude and fre-
quency) on a nonlinear oscillator. In this case it is
possible to use the well-known circle map [Guevara
& Glass, 1982; Glass et al., 1983; Glass & Mackey,
1988; Bub & Glass, 1994; Kremmydas et al., 1996]:

xn+1 = xn + f(xn) (mod 1) , (1)

where xn is a phase difference of oscillators and the
function f(x) determines a change in phase after
the action of the stimulus. This function is called a
phase response curve (PRC).

One of the most important characteristics of
the circle map is a rotation number ρ. It is defined
as follows:

ρ = lim
n→∞

xn − x0

n
.

For stable phase locking the rotation number is ra-
tional. If ρ is irrational then the system behavior is
quasiperiodic or chaotic.

It should be noted that such a one-dimensional
approach imposes restrictions: We neglect the prop-
agation of the excitation waves on the heart surface.
Thus, the violation of the cardiac rhythm due to
the absence of pulse coordinations in the whole my-
ocardium cannot be described within this model.

Analyzing dynamics of the model based on the
circle map, it is necessary to find a proper analyti-
cal approximation for the experimentally obtained
PRC. This allows investigation of the most salient
features of the system of interest.
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Fig. 1. Phase response curves: the experimental curves (dot-
ted line) and their analytical approximation (solid line). The
experimentally obtained phase response curves show the du-
ration of perturbed cycle (in %) as a function of the input
phase.

Experiments on the recording of phase shifts
have been carried out for quite a large number of
variety of systems, but we are interested in the PRC
extracted from the real cardiac tissues. In [Weid-
mann, 1951; Jalife & Moe, 1976] measurements of
the cycle durations of the spontaneously beating
Purkinje fibers after stimulation by short electric
current pulses have been performed. The obtained
phase response curve is shown in Fig. 1 (dotted
lines). Taking into account this experimental ma-
terial, it is possible to make the following general
conclusions [Weidmann, 1951; Jalife & Moe, 1976;
Glass et al., 1986; Glass & Mackey, 1988]:

(1) Depending on the phase, the single input can
lead to either increasing or decreasing in the
period of the perturbed cycle.

(2) After perturbation, the rhythm is usually re-
stored (after some transient time) with the
same frequency and amplitude, but with shifted
phase.

(3) At some amplitudes of the stimulus the obvious
breaks appear.

Also, it is necessary to take into account that:
(i) The assumption of the immediate resetting of
the pacemaker rhythm after the action of the ex-
ternal stimulus is a certain kind of idealization;
(ii) for an adequate description of the third PRC
feature it is necessary to choose a parametrical func-
tion f(x) = fa(x) which occurs to be discontinuous

as the amplitude parameter a continuously changes.
In the context of the circle map theory this means
that the transformation (1) changes a topological
degree. Unfortunately, consideration of such maps
is a rather complex problem, and a continuous PRC
approximation is commonly used. In the present
paper we also accept this restriction.

The basic feature of any approximation of the
PRC is the dependence on two physical parameters:
on the amplitude of stimulus and the input phase.
In the ideal case the other (so-called “internal”)
parameters can be reduced.

Applying the polynomial function as an approx-
imation of the PRC, we construct a model of two
bidirectionally interacting active oscillators.

3. A Model with Mutual Influence

of Impulses

Let us consider the system of two nonlinear inter-
acting oscillators (Fig. 2). Suppose that the pulse
of the first oscillator with period T1 beats at time
tn, and the pulse of the second oscillator (with the
period T2) beats at time τn. Then, the subsequent
moments of the appearance of impulses are defined
as

{

tn+1 = tn + T1,

τn+1 = τn + T2.

Now, taking into account that under the influence of
the second impulse the period of the first oscillator
changes by the value of ∆1((τn−tn)/T1) (where the
relation in brackets means that this value depends
only on the phase of the second impulse), we get
the expression for tn+1: tn+1 = tn + T1 + ∆1((τn −
tn)/T1). For further analysis, let us consider the case
when the pulses of two oscillators strictly alternate
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Fig. 2. Construction of the model of two nonlinearly inter-
acting oscillators.
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each other.1 Then for the second oscillator we obtain: τn+1 = τn +T2 +∆2((tn+1 − τn)/T2). Dividing these
relations by T1, we arrive at the corresponding values for the phases:



















ϕn+1 = ϕn +
1

T1

∆1(δn − ϕn),

δn+1 = δn +
T2

T1

+
1

T1

∆2

(

tn
T2

+
T1

T2

+
1

T2

∆1(δn − ϕn) −
τn

T2

)

.

Here ϕn = tn/T1 is the phase of the first perturbed oscillator with respect to the unperturbed one (with
period T1), and δn = τn/T1 is the phase of the second perturbed oscillator with respect to the same first
oscillator with period T1. Using parameters a = T2/T1 and ∆1/T1 = f1, ∆2/T1 = f2 one can write:











ϕn+1 = ϕn + f1(δn − ϕn),

δn+1 = δn + a + f2

(

1

a
(ϕn + 1 + f1(δn − ϕn) − δn)

)

,

which after some algebra yields the final expression
for the phase difference of the oscillators:

xn+1 = xn + a + f2

(

1

a
(1 + f1(xn) − xn)

)

− f1(xn) (mod1) , (2)

where xn = δn − ϕn.
Obviously, the PRC changes its form depend-

ing on the amplitude of the external stimulus. In the
simplest case this dependence can be approximated
by the multiplicative relation. Then the phase re-
sponse curves can be written as follows:

f1 = γh(x) , f2 = εh(x) ,

where h(x) is a periodic function, h(x + 1) = h(x).
Under such assumption, the transformation (2)
takes the form:

xn+1 = xn + a + εh

(

1

a
(1 + γh(xn) − xn)

)

− γh(xn) (mod 1) . (3)

In the present paper the map (3) with the poly-

nomial function h(x) will be addressed. The ob-
tained results are generalization of our previous
studies [Loskutov, 1994; Loskutov et al., 2002].

4. Phase Diagrams for

Unidirectional Coupling of

Oscillators

Let us analyze the situation when permanent in-
puts act on the nonlinear oscillator, i.e. f2(x) ≡ 0
or ε = 0. As an analytical approximation of the
experimental curve in Fig. 1, let us consider the fol-
lowing polynomial function:

h(x) = Cx2

(

1

2
− x

)

(1 − x)2 . (4)

The normalizing factor C is chosen in such a way
that the amplitude of h(x) is equal to 1, i.e. C =
20
√

5 (see Fig. 1, solid line). Then taking into ac-
count the refractory time δ we can write the map
(3) as

xn+1 =











xn + a, 0 ≤ xn ≤ δ, (mod 1),

xn + a − γh

(

xn − δ

1 − δ

)

, δ < xn ≤ 1, (mod 1),
(5)

where h(·) is determined by (4). Now let us ana-
lyze the dependence of the system dynamics on the
refractory time.

We start with the case when the refractory pe-
riod is trivial, i.e. δ = 0. The phase locking regions
in the parametric space (a, γ) obtained by numeri-

cal analysis are shown in Fig. 3(a), where a ∈ [1, 2]
is chosen. Different colors define the phase locking
areas with multiplicity N : M , where N cycles of
external stimulus correspond to M cycles of the
nonlinear oscillator. One can see that “tales” of the

1The case when the pulses of two oscillators are not intermittent is addressed in [Loskutov et al., 2003].
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(a) (b)

Fig. 3. Phase diagrams of the map (5): (a) δ = 0; (b) δ = 0.1.

(a) (b)

Fig. 4. Phase locking areas of the map (5): (a) δ = 0.3; (b) δ = 0.5.

main locking regions are slightly split and overlap
at large γ. As it follows from the analysis of the
system (5) with δ = 0.1 [Fig. 3(b)], nonvanishing
refractory time leads to the extension of the phase

locking areas and enhances splitting and overlap of
their tales.

In Fig. 4(a) the numerically obtained phase di-
agram for δ = 0.3 is shown. In this figure the same
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(a) (b)

Fig. 5. Phase diagrams of the map (5): (a) δ = 0.7; (b) δ = 0.9.

N : M stable phase lockings as in Fig. 3 are given
for comparison. As it follows from the figure, the
2 : 3 phase locking area increases with increasing
refractory time; simultaneously the 1 : 1 and 1 : 2
areas decrease.

The phase locking regions for δ = 0.5 are shown
in Fig. 4(b). This phase diagram is qualitatively dif-
ferent from those shown above. The form of 2 : 3
phase locking area is stretched and looks like an
arrow. The forms of 3 : 4 and 3 : 5 regions also
resemble arrows for δ = 0.7 [Fig. 5(a)]. At δ = 0.9
all phase lockings are degenerated into vertical lines.
This situation is illustrated in Fig. 5(b). Note that
for δ = 1 (i.e. the system does not respond to the
external action) there is no dependence on the stim-
ulus amplitude γ.

5. Phase Diagrams for Systems with

Bidirectional Interaction

In this section the system (3) at δ = 0.1 is con-
sidered. The analysis is performed in (γ, a)- and
(γ, ε)-parametric spaces.

5.1. Phase locking areas in the

(γ, a)-space

Assume that the influence of the first oscillator on
the second is small enough, for example, ε = 0.1.

The corresponding phase diagram for δ = 0.1 is
shown in Fig. 6(a). One can see that the mutual ac-
tion leads to deformation and splitting in the phase
locking areas. Note that even for small values of
the amplitude of the second stimulus γ, the main
phase locking areas overlap. This means that the
system dynamics becomes multistable: Its limiting
stage depends on an initial phase difference x0. The
growth of the refractory time in the model with
ε = 0.1 leads to a more deep distortion of the forms
of main tongues and disappearance of the splitting
areas.

If, however, we increase the influence of the first
oscillator up to, e.g. ε = 0.5, a very complicated
structure with much more deep deformation of the
main phase locking areas [see Fig. 6(b)] will ap-
pear. For example, the 1 : 1 area will degenerate
into a narrow strip, whereas the 1 : 2 phase locking
area will expand due to appearance of long narrow
tongues.

Numerical analysis shows that the increase of
ε up to approximately 0.5 is accompanied by the
expansion of resonance zones. At the same time,
the shape of the phase locking zones becomes more
complex, and their location changes. This leads
to the complete mixture of zones: Zones of vari-
ous multiplicity may be found in a small neigh-
borhood of almost any point (γ, a). Nevertheless
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(a) (b)

Fig. 6. Phase locking regions of the system of two bidirectionally interacting oscillators with δ = 0.1: (a) ε = 0.1; (b) ε = 0.5.

at any given value of ε self-similarly structures are

clearly observed.

Additionally, we have found as the nonlinear-

ity parameter ε further grows, the resonance zones

shrink and occupy a smaller area. In this case, the

mixing of the resonance tongues also takes place.

Thus, the increase of the interaction of the oscilla-

tors causes the mixing of the initially regular struc-
tures in the (γ, a)-space.

5.2. Phase locking regions in the

(γ, ε)-space

Now we construct the phase diagrams of the
interacting oscillators in the space of influence

(a) (b)

Fig. 7. Phase lockings in the space of stimulus amplitudes (δ = 0.1): (a) a = π/2; (b) a = 2.
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amplitude, i.e. (γ, ε). First we consider a = 2
[Fig. 7(a)]. This value of the period ratio implies
that for γ = ε = 0 the rotation number (see Sec. 2)
is rational, so that the dynamics of the system is
periodic with the 1 : 2 phase locking. Although for
a large nonlinearity there exist phase lockings with
another multiplicity, the behavior of the system is
periodic, with 1 : 2 phase locking, even at large γ
and ε.

Qualitatively different behavior is observed at
a = π/2. In this case the rotation number is irra-
tional at zero stimulus amplitudes, and the system
exhibits quasiperiodicity or chaoticity. However, as
the nonlinearity increases the periodic behavior be-
comes possible [Fig. 7(b)]: For a sufficiently large ε,
the decrease of the area occupied by the resonance
zones may be observed. Therefore, at irrational val-
ues of a there exists a significant probability of the
complex behavior of system (3).

6. Applications to Heart

Rhythm Pathologies

Let us consider the analogy between the obtained
results and pathological states of the cardiac tissue.
Using the developed models, it is possible, for ex-
ample, to describe the interaction of the sinus and
the ectopic pacemakers, the SA (sinoatrial) and AV
(atrioventricular) nodes and impact of an external
perturbation on the sinus pacemaker.

Consider the types of arrhythmias which one
can predict on the basis of our model. If the first
pulse oscillator is presented as the SA node and the
second one is considered as the AV node, then one
can conclude that certain stable phase lockings cor-
respond to cardiac pathologies which are detected
in a clinical practice. In this case among various
lockings one can observe the normal sinus rhythm
(1 : 1 phase locking). In addition, in the diagrams
we can see the classical rhythms of Wenckebach
(N : (N − 1) phase lockings) and N : 1 AV-blocks.

When the first pulse system is considered as the
AV node and the second one is presented as the SA
node, we obtain the inverted Wenckebach rhythms
(that are similar to the direct rhythms but the roles
of ventricles and atria change places) which were
recorded for some patients.

The existence of wide areas of phase lockings
(see Figs. 3–7) confirms it is possible to observe
synchronization of two oscillators qualitatively cor-
responding to some types of cardiac arrhythmias.
The phase diagram makes possible to determine the

type of synchronization corresponding to interac-
tion parameters a, γ, ε and δ. Moreover, the phase
pictures indicate that as the nonlinearity increases
(i.e. at growing γ) the areas with various phase
lockings start to overlap. The knowledge of such
regions, predicted by the present model, is neces-
sary to operate the system dynamics. In particu-
lar, removing the system from an undesirable mode
of synchronization to an appropriate state by the
external action may be of crucial importance for
applications.

7. Conclusion

In the present study a quite general model of two
nonlinear interacting impulse oscillatory systems is
elaborated. On the basis of this model it is possi-
ble to predict certain types of cardiac arrhythmias.
The constructed model is a universal one, in the
sense that its properties do not depend on the cho-
sen interaction type, i.e. on the form of phase re-
sponse curve. Taking into account the refractory
time the phase locking regions of the polynomial
maps (which describe a nonlinear oscillator under
the permanent inputs), are investigated. It is found
that the nonvanishing refractory time causes the ex-
tension of the phase locking areas, significant split-
ting and overlap of their tails. Moreover, the phase
locking areas shrink and tend to the vertical lines
as the refractory time tends to one.

The detailed analysis of the phase diagram of
the system with two bidirectionally interacting os-
cillators in the (γ, a)-space shows that besides the
splitting of the central tongues there is an overlap
of the main regions of synchronization, which cor-
responds to various types of cardiac arrhythmias.
This bistability is observed even for small enough

stimulus amplitude. The increase of refractory time
leads to the distortion in the forms of main tongues
and disappearance of the splitting areas. For suf-
ficiently large values of the first stimulus ε a very
complicated picture is observed, where the phase
locking areas are interwoven with each other.

Another important property of the suggested
model is that phase lockings in the space of the
stimulus amplitudes are observed. It is found that
the interacting oscillators can be synchronized even
if the ratio of their periods is irrational (note, that
the probability of this phenomenon is quite small).
If the coupling lacks (ε, γ → 0), however, this
would correspond only to the complex dynamics
(quasiperiodic or chaotic).
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The obtained results make possible to predict
the dynamics of oscillatory systems, depending on
the initial phase difference, on the type of inter-
action and its strength. Moreover, using the above
approach one can develop a quite general theory
of interacting oscillators under a certain periodic
perturbation. In this case the knowledge of multi-
stability areas would be helpful to stabilize the sys-
tem dynamics and return the cardiac tissue to the
required type of behavior.
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