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REPRODUCIBILITY OF THE STRUCTURE AND PROPERTIES

OF PARTS AND THEIR DESCRIPTION WITHIN THE FRAMEWORK

OF NONLINEAR DYNAMICS

A. Yu. Loskutov1

Translated from Steklo i Keramika, No. 7, pp. 17 – 20, July, 2000.

The problem of the reproducibility of complex structures is discussed from the standpoint of the applied the-

ory of dynamic systems. Some fundamental concepts of the theory of nonlinear fluctuations (bifurcations,

fractal sets, space and time networks of interacting subsystems) that can be helpful in applications are de-

scribed on a qualitative level.

The problem of the reproducibility of complex structures

that appear in nonlinear media has become closely connected

with some problems of the applied theory of dynamic sys-

tems. Indeed, at the present time such concepts as bifurcation

sets, fractals, strange attractors, analysis of time series, etc.

penetrate the applied sciences deeper and deeper [1]. How-

ever, many aspects of the theory have not yet been compre-

hended in detail. Moreover, some of the concepts of the the-

ory of dynamic systems are interpreted incorrectly in the ap-

plied aspect. It becomes more and more obvious that after the

appearance of recent popular publications concerning

achievements of nonlinear dynamics it has shared the fate of

cybernetics and the theory of catastrophes: the deep works

concern the respective special fields and the well-known

terms have been preserved in speculative works only or, at

best, in popular scientific literature. Such a situation is a con-

sequence of misunderstanding of the basic concepts of the

modern theory of dynamic systems. It is appropriate to recall

here the words of Academician V. I. Arnol’d: “It is hard to

agree with the fact that the introduction of a new term not ac-

companied by a discovery of new facts is a substantial

achievement. However, the success of ‘cybernetics,’ ‘attrac-

tors,’ and the ‘theory of catastrophes’ reflects the fruitfulness

of word-invention as a method of scientific work.”

These words can be applied to the use of the results of

nonlinear dynamics in particular cases. Let us discuss one

such case, namely, the reproducibility of the quality of parts.

As a rule, reproducibility is understood as the capacity of

a system to have the same “quality” in a steady state. Quality

is commonly understood as a set of requirements imposed on

the system. However, the situation is aggravated (sometimes

quite substantially) if the system attains a steady state after

some qualitatively different transition processes (bifurcation

states). The main reason for reproducibility in this case is

multistability rather than the presence of bifurcation points.

Multistability [2] is understood as the presence of a system

of coexisting attractors in the phase space. The properties of

the system will depend on the attraction field of what attrac-

tor the initial conditions fall in.

An unsteady state is quite often understood as the posi-

tion of the system at a bifurcation point. However, this is not

correct in the general case. At a bifurcation point the system

is unsteady indeed, but an unsteady system does not neces-

sarily have to be in a bifurcation state. Many authors dealing

with applied problems of nonlinear dynamics erroneously as-

sume that the system at a bifurcation point is seemingly

obliged to choose the subsequent evolution, but in the pre-

sence of noise (inevitable to this or that degree) this path is

indeterminate in advance.

Let us consider a model example. Assume that we have

some melt. If the temperature is maintained at a constant

value, the properties of the melt will not change. However,

with a specified decrease in the temperature (cooling) the

melt will pass through a number of qualitative transforma-

tions, and the steady state of such a system (under normal

conditions) will be a certain specimen. It is obvious that the

bifurcation parameter in this example is the temperature.

What determines the properties of the final state of the sys-

tem (specimen)? It is natural that the observation of permis-

sible deviations in the concentration of the components of

the melt, the pressure, the rate of decrease of the temperature,

etc. will be very important. Under identical conditions (even

in the presence of low noise) the system will go through one

and the same cascade of bifurcations upon a change in the

parameter. At the same time, if the system (specimen) has

several attractors in the final state, the concentration of the
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components of the melt will be the main technological crite-

rion of reproducibility. Therefore, the reproducibility of the

quality of the specimen in the given situation is connected

foremost, if we use the language of nonlinear dynamics, with

the multistability of the system.

Another situation can be encountered when the parame-

ters of the system change slowly with time. In this case new

phenomena appear, for example, disappearance of the equi-

librium or its instability, so that the system has to pass rap-

idly to a new state, or extension of the loss of stability, etc.

These phenomena are known as relaxation fluctuations (the

mathematical side of the problem is described in [3]). Such

fluctuations can be either regular or chaotic, which corre-

sponds to random time intervals between subsequent transi-

tions of the system from one regime of motion to another.

Relaxation fluctuations in the problem of reproducibility

play a role far from the last, and consideration of this prob-

lem with allowance for such fluctuations can give us a key to

answering many questions.

On the other hand, the theory of bifurcations can be help-

ful for the solution of applied problems. This is connected

with the fact that all systems of ordinary differential equa-

tions of the same dimensionality near the values of the pa-

rameters at which a bifurcation of one type occurs are topo-

logically equivalent. Consequently, by describing a bifurca-

tion and determining its type we can judge the behavior of

the system in the neighborhood of the bifurcation value of

the parameter. In addition to the widely known types of bi-

furcation, such as the bifurcation of Andronov – Hopf, the

bifurcation of the origination of a torus, the bifurcation of

doubling of a period, etc. we can quite often encounter bifur-

cations of contours composed of saddle separatrices [3 – 5].

The study of such bifurcations has been promoted by the dis-

covery of homoclinic trajectories and separatrix contours in

models important for applications. The well-known Lorenz

model [2] having a homoclinic contour of the eight-butterfly

type has played a rather significant role here. This system is

the first example of discovery of chaotic motion.

Another direction that can be useful for solving problems

of reproducibility in its applied sense is the theory of fractal

sets [6, 7]. The theory of fractals had not been widely used

for a long time until the discovery of problems where the

fractal structure and the dimensionality are the main charac-

teristics of the system. For example, the theory of fractals in

turbulence is closely connected with Kolmogorov’s theory of

scale invariance. If we consider the speed of a turbulent flow

as a function of the space variables and the time, it will we

represented by a fractal of the same type as the Brownian

curve.

Fractal sets occupy a special place in the theory of dy-

namic systems because the solutions of the majority of non-

linear problems have a fractal form. The point is that chaotic

fluctuations in dissipative systems are representable mathe-

matically by an attractor that does not possess such a smooth

surface as, for example, a torus. The geometrical structure of

such attractors is much more complex. In particular, they can

possess a geometrical (scale) invariance, i.e., be represent-

able by fractals. The complex geometry of strange attractors

sometimes allows us to describe them just like fractals.

Fractal theory has common aspects with the method of

the renormgroup and the theory of phase transformations.

Important applications of the theory of fractal sets have been

discovered unexpectedly in materials science, theoretical bi-

ology, mathematical modeling, and other fields. Many topics

have been comprehended here based on scale invariance.

One of the methods for describing such complex objects

as fractals is aggregation limited by diffusion [6]. In accor-

dance with this mechanism a certain kind of fractal can be

obtained in the process of random irreversible growth. The

process is extremely nonequilibrium. However, it can be

used successfully for explaining some properties of the

growth of fractal structures.

In a real situation, a nucleus moves in accordance with

some law. The development of this problem should give us

an answer to questions connected with structure formation in

nonequilibrium systems and create conditions for the forma-

tion of clusters with specified properties and specific dimen-

sionality.

Structure formation in spatially extended chaotic media

is one of the most interesting problems of nonlinear dyna-

mics closely related to the problem of reproducibility. One of

the methods of the description of such media consists in their

approximation by a set of discrete elements interacting lo-

cally with each other. It is known that even when the indivi-

dual elements of the medium possess a complex internal

structure, their complexity does not manifest itself fully in

the interactions between them, and they function with respect

to the macrosystem as quite simple objects with a small num-

ber of effective degrees of freedom. As a rule, in the opposite

case not a single ordered structure appears in the system. The

problem of nonlinear dynamics consists in finding and inves-

tigating in detail fundamental mathematical models based on

use of the most typical suppositions concerning the proper-

ties of the individual elements that constitute the system and

the laws of interaction between them.

The studied medium can be quantized either with respect

to the space or with respect to the space and the time. In the

case of spatial quantization the initial system is approxi-

mated by a finite or countable set of elements with a certain

coupling between them. Every such element is represented

by a dynamic system with a small number of variables. If the

dynamic system is additionally specified by a map, we speak

of space-and-time quantization of the initial system. Space-

and-time discrete models are known as lattice or network

ones.

The space-and-time lattices of interacting systems can be

one-dimensional, two-dimensional, or three-dimensional.

The structures of the lattices can differ too. Map lattices are

studied most often, when every element interacts in this or

that way only with its closest neighbors. Another kind of

coupling presumes global cohesion, when every element of

the lattice is coupled with every neighbor. Local interaction
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predominantly studies the diffusion kind of coupling be-

tween the elements. If the whole of the lattice is composed of

identical elements, it is called homogeneous. If the lattice

contains “embeddings,” it ceases to be homogeneous and is

much harder to investigate. Homogeneous lattices are stud-

ied (commonly by numerical methods) in virtually any work

devoted to diffusion-interacting maps [8 – 11]. However, it is

obvious that in the applied aspect the homogeneity of a space

(in our case the identical nature of all the elements) is an ide-

alization used to simplify the analysis. Therefore, it is of in-

terest to determine how the system will change qualitatively

with the appearance of inhomogeneities.

The following questions arise in the study of inhomo-

geneous lattices. If the behavior of individual elements is

chaotic, will the lattice manifest chaotic properties too? Will

the chaos suppress the surrounding order or will the order of

the individual elements propagate to the whole of the lattice?

Moreover, why is a complex space-and-time state preferable

for some nonlinear media to simple homogeneous behavior

(i.e., when the system “spontaneously” transforms from a

virtually homogeneous state to a spatially inhomogeneous

one) and how can such a state be realized? These questions

can be referred to problems of polymerization, creation of

structures with specified properties, reproducibility, etc.

Intense research on chaotic dynamic systems has shown

an unexpected and wonderful property: they are quite pliable

and extremely sensitive to external actions [12 – 15]. It

seems that this very fact is responsible for the processes of

structure formation. The development of any system is a con-

sequence of autonomous acts of self-organization. For this

reason, the developing system can pass to one of a very large

number of permissible states. However, the evolving system

is always characterized by a specific (specified) dynamics.

This process can be controlled with the help of weak actions

that affect the choice of this or that state. Thus, it has been

shown that it is possible to control the dynamics of complex

systems, i.e., to transform initially chaotic systems from a

regime of chaotic fluctuations to the requisite dynamic re-

gime, and thus stabilize their behavior by means of quite

weak actions.

Most systems are open; they are characterized by an en-

ergy exchange with the ambient. Therefore, we can assume

that the lattice is subjected to an external action, i.e., that ev-

ery element of it experiences a certain influence. In this case

a specified space pattern will be preserved with a specific

diffusion coefficient. However, qualitative restructuring oc-

curs when the diffusion intensifies, i.e., the spatial order is

distorted, and elements with both regular and chaotic dynam-

ics begin to appear in the system in a random manner. With

further intensification of the diffusion the behavior of the dis-

tributed system as a whole becomes chaotic [16]. Order is al-

ways absorbed by disorder.

Let us now assume that initially (no external action) we

have a homogeneous distributed medium whose elements

can manifest both regular and chaotic dynamics. If we as-

sume that this system exchanges energy with the ambient, we

can show that spatial clusters can appear in the system under

the action of the arriving energy; the clusters consist of simi-

larly functioning subsystems (maps). In other words, steady

space-and-time structures appear in the open system. How-

ever, they can exist in a quite narrow range of diffusion coef-

ficients; if their value is below the critical one, we are deal-

ing with absolute order, if it exceeds the critical value, we are

dealing with complete chaos.

Now let us assume that the elements do not possess rigid

coupling but can arbitrarily collide with each other and wan-

der chaotically over the accessible space. In this case the

problem of structure formation can be reformulated in the

language of cascades of nonlinear automata [17]. Studies of

such cascades confirm the idea that random organization of a

stable chain of elements is an extremely low-probability

event. Only a small portion of the combinations of base ele-

mentary dynamic systems manifests a specified type of be-

havior. However, if we take into account that the reason be-

hind the formation of a complex system is its capacity to

manifest the prescribed dynamics, the number of possible

combinations is reduced markedly. This fact allows us to

suggest a mechanism lying at the basis of formation of com-

plex structures that consist of a relatively small number of

elementary subsystems.

Development of the described methods and knowledge

of the rules of self-organization make it possible to create

complexly organized distributed media with specified dy-

namic properties and to control their behavior. In turn, this

can give a key to the solution of the problem of reproducibi-

lity of structures in complex space-and-time systems.
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