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FIELD THEORY ANALYSIS OF CRITICAL BEHAVIOR OF A

SYMMETRIC BINARY FLUID

N. V. Brilliantov,1 A. Yu. Loskutov,1 and V. V. Malinin1

A method is elaborated for constructing an effective field theory Hamiltonian of the Landau–Ginzburg–

Wilson type for off-lattice models of binary fluids. We show that all coefficients of the effective Hamiltonian

for a symmetric binary fluid can be expressed in terms of some known characteristics of the model hard-

sphere fluid, namely, compressibility and its derivatives with respect to density. Application of the effective

Hamiltonian is demonstrated by an example of determining the curve of critical layering points in the

mean-field approximation. This curve agrees well with numerical experiment results for symmetric binary

fluids.

1. Introduction

The modern theory of critical phenomena, which is based on the universality hypothesis and (tech-
nically) on the renormalization group (RG) method, is successfully applied in many divisions of physics
ranging from magnetic systems and solutions to processes of self-avoiding walks and percolation [1], [2].
Application of the RG method to critical phenomena was initially developed for magnetic systems (see,
e.g., [3] and [4]). The majority of investigations were devoted to these systems. The RG method was also
used to investigate critical properties of fluids, and a number of effective algorithms were elaborated for
calculating thermodynamic quantities in the domain where critical fluctuations play a dominant role [5]–
[9]. These approaches are based on the direct application of the Kadanoff–Wilson recursive scheme (see,
e.g., [4]). But this does not permit the general analysis of critical behavior as visually and simply as do
the methods based on using the system Hamiltonian in the Landau–Ginzburg–Wilson (LGW) form. This
Hamiltonian is written as

H =
∫

dr
[
a2σ

2 + B4σ
4 + B6σ

6 + · · · + b2(∇σ)2
]
,

where σ is the magnetization or the order parameter or, as it is also called, the “critical field,” and the
coefficients a2, B4, B6, . . . and b2 characterize the respective dependence of the Hamiltonian (or free en-
ergy [4]) on the degree of the field and its spatial gradient. A Hamiltonian of this type is also called a
“field theory” Hamiltonian. Knowing such an effective Hamiltonian of a system, one can draw conclusions
about the character of its critical behavior and universality class, determine the domain of influence and the
magnitude of the contribution of critical fluctuations to thermodynamic functions, derive simple mean-field
estimates for the position of the critical point, and so on. It is therefore very important to find the field
theory Hamiltonian for a system possessing critical behavior.

Effective field Hamiltonians for fluids were constructed by different methods in a number of works.
For example, in [10], the Hamiltonian of a fluid was reduced to a field Hamiltonian by coarsening the

1Moscow State University, Moscow, Russia, e-mail: kolja@gran.phys.msu.su, loskutov@moldyn.phys.msu.su,
vitmalin@mail.ru.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 130, No. 1, pp. 145–158, January, 2002.

Original article submitted March 22, 2001.

0040-5779/02/1301-0123$27.00 c© 2002 Plenum Publishing Corporation 123



spatial scale. In [11], the coefficients of the effective Hamiltonian were found by comparing the values
of compressibility, correlation length, and critical amplitudes of the order parameter calculated in the
framework of the generalized mean-sphere approximation with the same quantities calculated using the
LGW Hamiltonian. In [12], a functional generalization of the Mayer expansion was used. In this case,
attractive interactions were considered at the level of the second virial coefficient, and a number of different
approximations were used for repulsive interactions. The indicated approximations were used in [12] to
calculate the coefficients of the effective LGW Hamiltonian for a one-component fluid. A similar approach,
but in combination with somewhat different approximations, was used to calculate the coefficients of the
effective Hamiltonian for the so-called restricted primitive electrolyte model [12]–[14].

In contrast to all these approaches, which use some approximations, Hubbard and Schofield [15] sug-
gested an exact method for constructing an effective field Hamiltonian of a “real,” off-lattice fluid using
an integral transformation of the Hubbard–Stratonovich type . Although no coefficients of the effective
Hamiltonian were calculated in [15], they convincingly argued that critical behavior of fluids relates to the
same universality class as Ising magnets. A further development of the Hubbard–Schofield method was
suggested in [16] and [17], and it was shown that all coefficients of the effective LGW Hamiltonian for
a one-component fluid can be expressed via some known characteristics of the model hard-sphere fluid,
namely, compressibility and its derivatives with respect to density. In [18], this method was used to find the
LGW Hamiltonian for Coulomb fluids. In particular, using the RG method, it was shown that the unusual
critical behavior of such systems is related to the negativity of the coefficient B4. In this case, it was
established that the lattice and off-lattice models have different types of critical behavior in these systems.
We note that the Hubbard–Schofield method is much simpler than the collective variables method, which
is also an exact method for finding the effective Hamiltonian of a fluid [19].

Unlike one-component systems, two-component fluids can show both the ordinary critical behavior
corresponding to the liquid–gas transition and the critical behavior related to the layering into two phases,
one enriched by the A component and the other by the B component. In the first case, the order parameter
is the difference between the densities of the liquid and gas phases (with uniform compositions), and in the
second case, it is the difference between the concentrations of the A and B components in the phases. In
the first case, the liquid–gas coexistence curve in the temperature–density plane ends at a single critical
point, and in the second case, an entire line of critical layering points, usually called a λ-line,2 appears in
this plane. The λ-line ends at its point of intersection with the liquid–gas coexistence curve (see Fig. 1),
and this point is called the final critical point (FCP).

The critical behavior of systems whose phase diagram has a λ-line and an FCP has been actively
investigated in recent years. The main questions here relate to the universality class and the character of
critical behavior along the λ-line and at the FCP [20]–[23]. For example, the nonclassical character of critical
behavior near the FCP was revealed in the framework of the spherical model [20]. Similar behavior on the
λ-line was established theoretically [21], [22] and numerically using the Monte Carlo method [23]. In [24],
the phase behavior of a symmetric binary fluid (i.e., a fluid consisting of identical A and B components
differing only in the interaction potentials for particles of different types) was investigated both numerically
and with the phenomenological expansion of the free energy with respect to the order parameter. In this
case, the dependence of phase diagrams on the parameter ε equal to the ratio of the interaction energy for
particles of one type to that for particles of different types was studied.

A qualitative field theory analysis of the critical behavior of a system with a Hamiltonian depending on
two fluctuating fields (one of which is regular at the critical point) was performed in [25], where the Hubbard–

2For mixtures, it is also necessary to introduce the axis of relative concentrations in addition to density and temper-

ature. Then a coexistence curve in the density–composition coordinates with the related critical point corresponds to each
temperature. This precisely leads to the appearance of the line of critical layering points (the λ-line).
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Fig. 1. Typical structure of phase diagrams for two-component systems having a λ-line (3) and

an FCP (2). Point 1 is the critical gas–liquid transition point. The respective domains I, II, and III

correspond to the gas phase, the homogeneous mixture of particles of types A and B, and the coexisting

phases enriched by one (A) or the other (B) component.

Stratonovich transformation for the spin Hamiltonian corresponding to the lattice gas of a symmetric binary
mixture was used. It was shown that the critical behavior near the FCP is equivalent to that along the
λ-line. In [26], the collective variables method was used to study the critical liquid–gas transition point for
a binary fluid.

In this paper, the critical behavior of a symmetric binary fluid is investigated by constructing an
effective field theory Hamiltonian of the LGW type. We use the Hubbard–Schofield transformation of the
original Hamiltonian of the fluid [16], [17]. In contrast to the similar Hubbard–Stratonovich transformation,
this transformation does not require the existence of the inverse operator for the part of the interaction
potential corresponding to the interactions of the impenetrable particle cores. In particular, this permits
using off-lattice models. The singular part of this potential is considered separately and is a basis for
calculating the coefficients of the effective Hamiltonian. In the framework of this approach, an effective
field theory Hamiltonian can be constructed with explicit expressions for the coefficients for field powers of
any order.

As an example of applying the effective Hamiltonian, we determine the curve of critical layering points
(the λ-line), which agrees well with numerical experiment results [24].

2. Derivation of the effective LGW Hamiltonian

The particle interaction potential U(r)ab in a binary mixture can be represented as a sum of two parts,
U(r)ab = Ur(r)ab +J(r)ab, where Uab

r and Jab describe the respective purely repulsive and purely attractive
interactions, a = A,B, and b = A,B.

The suggested approach is valid for any interaction potential representable as a sum of repulsive and
attractive parts. To simplify the presentation of the material and also to make it possible to compare
predictions of our theory with numerical experiment results [24], we consider an interaction potential of
the type of a rectangular potential well. Moreover, we assume that the repulsive interactions in the binary
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mixture under study are the same for all types of particles,

UAA
r = UBB

r = UAB
r = Uhs(r) =

{
∞ for r < d,

0 for r ≥ d,

where d is the diameter of the hard cores of the particles, and the attractive part of the potential has the
form

JAA = JBB = J(r) =

{
−J for r ≤ λd,

0 for r > λd,
JAB =

{
−ε for J ≤ λd,

0 for r > λd.

Here, λd is the width of the rectangular potential well, J describes the attraction between the particles
(the depth of the potential well), and we introduce the parameter ε = JAB/J ≤ 1 determining the relative
interaction force for the particles of one type and different types. We consider the Hamiltonian of the above
system (omitting its ideal part),

H = Hhs −
1
2

∑
a,b

∑
k

Jab
k na

kn
b
−k +

1
2
NAJ(0) +

1
2
NBJ(0). (1)

Here, Hhs characterizes the repulsive interaction between the hard cores of the particles, and all the other
terms in the right-hand side of (1) relate to the attractive part Ha of the Hamiltonian represented via the
collective variables,

na,b
k =

1√
V

Na,b∑
j=1

e−ikra,b
j , (2)

where rj are the coordinates of the jth particle. (The parameters Na and Nb are the numbers of particles of
each of the types, a = A,B, and b = A,B.) Here, V is the volume of the system and Jk =

∫
J(r)e−ikr dr.

The summation in (1) ranges the wave vectors k = {kx, ky, kz} with ki = 2πli/L (i = x, y, z), where li are
integers and L3 = V . We introduce the new variables

qk = na
k − nb

k, sk = na
k + nb

k, (3)

for which the attractive part of the Hamiltonian has the form3

Ha = −1
2

∑
k

{
Jk

2
(1 − ε)qkq−k +

Jk

2
(1 + ε)sks−k

}
+

1
2
NAJ(0) +

1
2
NBJ(0). (4)

Then it becomes possible to write the configuration integral of the system in question [15], [16],

Q =
〈

exp
{
β

2

∑
k

Jk

2
[
(1 − ε)qkq−k + (1 + ε)sks−k

]}〉
r

Qre
−βJ(0)(NA+NB)/2, (5)

where β = 1/kBT , kB is the Boltzmann constant, and T is the temperature. The expression Qr is the
configuration integral of the base system of hard spheres, and 〈( · )〉r = Q−1

r

∫
drN ( · ) denotes the average

3In the general case of a binary system with an attractive potential of an arbitrary form (for which it is not allowable to
write JAB = εJAA, ε ≤ 1), the expressions Jk(1± ε) in (4) should be replaced with JAA

k ± JAB
k .
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over this system. We note that the configuration integral Qr is a regular function in the phase-space domain
under consideration because the base hard-sphere system has no critical layering points; therefore, only the
first term in (5) determines the critical behavior of the system. In accordance with the Hubbard–Schofield
scheme [15], i.e., using the identity

ea2x2/2 =
1√

2πa2

∫ +∞

−∞
e−y2/(2a2)+xy dy,

we bring the configuration integral Q to the form [16]

Q ∼
∫ ∏

k

dσk

∏
p

dγp exp
{
− 1
β

∑
k

σkσ−k

(1 − ε)Jk
− 1

β

∑
p

γpγ−p

(1 + ε)Jp

}
×

×
〈
exp

{∑
k

σkq−k +
∑
p

γps−p

}〉
r
, (6)

where the factor that is regular at the critical point and does not affect the further analysis has been
omitted. The integration in (6) is performed under the condition that σ−k = σ∗

k and γ−p = γ∗
p. (Here, σ∗

k

and γ∗
p are the respective complex conjugates of σk and γp.)

We assume that the critical point for the gas–liquid transition lies sufficiently far from the line of
critical layering points (see Fig. 1). It is clear that in this case, only the field σk conjugate to the variable
qk = na

k−nb
k is critical, whereas the field γp conjugate to sp = na

p +nb
p is regular.4 Therefore, applying the

cumulant expansion for
〈
exp

{∑
k σkq−k +

∑
p γps−p

}〉
r

[28], we retain the terms up to the fourth degree
with respect to the field variable σ in resulting expression (6) (because the coefficient in σ2 vanishes in the
neighborhood of the λ-line) and up to the second degree with respect to γ (because the coefficient of γ2 is
always nonzero in the domain under consideration). This results in the relation

Q ∼
∫ ∏

k

dσk

∏
p

dγp exp
{
− 1
β

∑
k

σkσ−k

(1 − ε)Jk
+

∑
p

F (p)√
V

γp +

+
4∑

n=1

1
V n/2−1

∑
k1,...,kn

un(k1, . . . ,kn)σk1 · · ·σkn +
∑
p1,p2

G(p1,p2)
V

γp1γp2

}
(7)

with the expressions for the coefficients F and G

F (p)
V

= v1(p) + 2
∑
k

w11(k,p)√
V

σk + 3
∑
k1,k2

w21(k1,k2,p)
V

σk1σk2 +

+ 4
∑

k1,...,k3

w31(k1, . . . ,k3,p)
V 3/2

σk1 · · ·σk3 +

+ 5
∑

k1,...,k4

w41(k1, . . . ,k4,p)
V 2

σk1 · · ·σk4 ,

4It was shown in [27] that the order parameter and its conjugate field in the corresponding integral transformation have
the same critical behavior.
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G(p1,p2)
V

= − 1
β(1 + ε)Jp

+ v2(p1,p2) + 3
∑
k

w12(k,p1,p2)√
V

σk +

+ 6
∑
k1,k2

w22(k1,k2,p1,p2)
V

σk1σk2 +

+ 10
∑

k1,...,k3

w32(k1, . . . ,k3,p1,p2)
V 3/2

σk1 · · ·σk3 +

+ 15
∑

k1,...,k4

w42(k1, . . . ,k4,p1,p2)
V 2

σk1 · · ·σk4 ,

where

un(k1, . . . ,kn) =
V n/2−1

n!
〈qk1 , . . . , qkn〉c,r,

vm(p1, . . . ,pm) =
V m/2−1

m!
〈sk1 , . . . , spm〉c,r,

wnm(k1, . . . ,kn,p1, . . . ,pm) =
V (n+m)/2−1

(n + m)!
〈qk1 , . . . , qkn , sp1 , . . . , spm〉c,r.

Here 〈 · 〉c,r denotes the cumulant mean calculated for the base system. Using the definitions of equilibrium
correlation functions of a fluid [29] and of cumulant means [28], we can express the coefficients of the powers
of σ and γ in (7) explicitly in terms of the Fourier transforms of the correlation functions h1, h2, . . . , hn of
the base hard-sphere system, which are defined as

h1(r) ≡ δ(r), h2(r1, r2) ≡ g2(r1, r2) − 1,

h3(r1, r2, r3) ≡ g3(r1, r2, r3) − g2(r1, r2) − g2(r1, r3) − g2(r2, r3) + 2, . . . ,
(8)

where gl(r1, . . . , rl) are the l-particle equilibrium correlation functions of the base system. As the simplest
example, we consider the main stages in calculating the function w11(k,p). Using the definitions of cumulant
means [28],

w11(k,p) =
1
2!
〈qksp〉c,r =

1
2!

(
〈qksp〉r − 〈qk〉r〈sp〉r

)
, (9)

we obtain

〈qksp〉c,r = 〈na
kn

a
p〉r − 〈na

k〉r〈na
p〉r + 〈na

kn
b
p〉r − 〈na

k〉r〈nb
p〉r −

− 〈nb
kn

a
p〉r + 〈nb

k〉r〈na
p〉r − 〈nb

kn
b
p〉r + 〈nb

k〉r〈nb
p〉r (10)

for the variables qk and sp using expressions (2) and (3). The definition of a binary symmetric fluid
implies that the averaging in calculating means of the form 〈nα

k1
, nβ

k2
, . . . , nγ

kn
〉, where α, β, . . . , γ = A,B, is

performed with respect to the Hamiltonian of the base system of hard-sphere particles of diameter d. (This
system is the same for particles of types A and B.) We now take representation (2) and the definition of
equilibrium correlation functions [29] into account. For example, this gives

〈na
kn

a
p〉r − 〈na

k〉r〈na
p〉r =

ρa

V

∫
e−ikr1−ipr1 dr1 +

ρ2
a

V

∫
e−ikr1−ipr2g2(r1, r2) dr1 dr2 −

− ρ2
a

V

∫
e−ikr1 dr1

∫
e−ipr2 dr2 =

= δk+p,0{ρ2
ah̃2(k) + ρa}
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for the Fourier transform, where ρa = NA/V and ρb = NB/V are the respective particle densities for types
A and B, h̃l denotes the Fourier transform of hl, and the relation δk,0V =

∫
eikr dr expressing the Kronecker

delta for a discrete argument is used. Calculating analogously for the other terms in (10), we obtain the
final expression for w11(k,p) (see (9)),

w11(k,p) =
δk+p,0

2!
{
h̃2(k)(ρa + ρb)(ρa − ρb) + (ρa − ρb)

}
.

The coefficients in (7) can be calculated similarly up to an arbitrary order. For example,

u1 = δk1,0{ρa − ρb},

u2 =
δk1+k2,0

2!
{
h̃2(k1)(ρa − ρb)2 + (ρa + ρb)

}
,

u3 =
δk1+k2+k3,0

3!
{
h̃3(k1,k2)(ρa − ρb)3 + (ρa − ρb) +

+
[
h̃2(k1) + h̃2(k2) + h̃2(k3)

]
(ρ2

a − ρ2
b)

}
,

w21 =
δk1+k2+p1,0

3!
{
h̃3(k1,k2)(ρa − ρb)2(ρa + ρb) + (ρa + ρb) +

+
[
h̃2(k1) + h̃2(k2)

]
(ρa − ρb)2 + h̃2(p1)(ρa + ρb)2

}
,

and so on. It follows from the structure of the coefficients that all coefficients of odd powers of the field
variable σ are identically zero for a symmetric system (where the average number of type-A particles is
equal to the average number of type-B particles, i.e., ρa = ρb).

Integrating with respect to the set of variables {γp} in (7), we obtain the relation for the configuration
integral of the system:

Q ∼
∫ ∏

k

dσk exp
{
− 1
β

∑
k

σkσ−k

(1 − ε)Jk
+

4∑
n=1

1
V n/2−1

∑
k1,...,kn

un(k1, . . . ,kn)σk1 · · ·σkn

}
×

× exp
{
−

∑
p1,p2

1
4
F (p1)G−1(p1,p2)F (p2) − log[detG(p1,p2)]

}
, (11)

where G−1(p1,p2) is the inverse matrix of G(p1,p2). Assuming that the critical liquid–gas transition point
is located far from the λ-line, we can neglect the fluctuations of the full density ρ = ρa + ρb of the fluid and
keep only the terms corresponding to p1 = 0 and p2 = 0 in (11). We next expand the functions F (0) and
G(0, 0) in (11) up to the fourth-order terms with respect to the field variable σk, which corresponds to the
usual LGW representation in analyzing the critical behavior of a system in the three-dimensional space.
Then collecting the terms in like powers of σk, we find

Q ∼
∫ ∏

k

σke
−H

with the effective Hamiltonian H given by the formula

H =
∑
k1,k2

B′
2σk1σk2 +

∑
k1,...,k4

B′
4

V
σk1 · · ·σk4 +

∑
k1,k2

D′
4

V
σk1σk2

∑
k3,k4

σk3σk4 . (12)
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(The expressions for the coefficients in the effective Hamiltonian are given below.)
We are interested in the behavior of the system in the vicinity of the curve of critical layering points

(the λ-line), i.e., in the domain where the major role is played by large-scale fluctuations of the density
difference, which corresponds to fluctuations with small wave vectors. We therefore consider the expansion
of the Hamiltonian coefficients for small k. We note that the LGW Hamiltonian written in terms of the
Fourier transforms of field variables contains no terms with powers of k higher than k2. (This is equivalent
to the absence of gradient terms of an order higher than two in the LGW Hamiltonian [4].) Moreover, the
only term of the order of k2 is proportional to k2σkσ−k. Hence, for n > 2, only the zeroth-order terms
should be kept in expansion (12) for the coefficients of the effective Hamiltonian, and we represent the
coefficient B′

2 in the form B′
2 = a′2 + b′2k

2.
We use the expansion for the correlation functions h̃l(k) = h̃l(0) − k2h̃′′

l (0) with small k. (In this
case, h̃l(0) = h̃l(0, . . . , 0).) The value of h̃2(0) can be expressed via the isothermal compressibility χr =
ρ−1(∂ρ/∂Pr)β of the base hard-sphere system in the form 1 + ρh̃2(0) = ρkBTχr ≡ z0, where z0 is the
reduced density and Pr and ρ = ρa + ρb are the corresponding pressure and density in the base system.
Using the well-known formulas relating the correlation functions of different orders [29]

χρ2 ∂

∂ρ
ρlgl = βρl

[
lgl + ρ

∫
drl+1(gl+1 − gl)

]
,

we derive a formula for the zeroth moments of the functions h̃l(0) [16],

χρ2 ∂

∂ρ
ρlh̃l(0) = βρl

[
lh̃l(0) + ρh̃l+1(0)

]
. (13)

Recursive application of Eq. (13) to itself can give an expression for each of the functions h̃l(0) in terms of
the reduced compressibility z0 and its derivatives with respect to density, for example,

h̃2(0) = ρ−1(z0 − 1),

h̃3(0) = ρ−2(z2
0 − 3z0 + 2 + z0z1),

h̃4(0) = ρ−3(z3
0 − 6z2

0 + 11z0 − 6 + 4z2
0z1 − 6z0z1 + z0z

2
1 + z2

0z2),

where z1 = ρ∂z0/∂ρ and z2 = ρ2∂2z0/∂ρ
2. We thus reach the conclusion that all coefficients of effective

Hamiltonian (12) can also be expressed in terms of the isothermal compressibility χr of the base system
and its derivatives with respect to density. Using the very exact Carnahan–Starling state equation [30] for
the hard-sphere system,

βFex,hs

N
=

4η − 3η2

(1 − η)2
,

where η = (π/6)ρd3 is the packing coefficient, and differentiating twice with respect to density, we obtain

z0 = (1 − η)4(1 + 4η + 4η2 − 4η3 + η4)−1.

Next, we express the effective Hamiltonian via the field depending on the spatial coordinate. For
this, it is necessary to transform the variables σk to the field variables σ(r). Under this transformation,
integration with respect to the set of variables {σk} is replaced with integration with respect to the field
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σ(r), and the term proportional to k2σkσ−k becomes the one proportional to [∇σ(r)]2. We introduce the
new variables a′2 = ρca2, b′2 = ρ

1/3
c b2, B′

4 = ρcB4, and D′
4 = ρcD4, where ρc is the critical density at the

FCP. We use ρ
−1/3
c as the length-scale factor. Performing all the necessary transformations, we obtain the

final expression for the effective LGW Hamiltonian of a symmetric binary fluid in the neighborhood of the
λ-line,

H =
∫

dr
[
a2σ

2 + B4σ
4 + D4σ

2〈σ2〉 + b2(∇σ)2
]
,

where 〈σ2〉 = V −1
∫
σ2(x) dx and the coefficients a2, b2, B4,and D4 have the forms

a2ρc =
3ρw21(0)

2G0
+

1
(1 − ε)βJ0

− 3ρ2w22(0)
2G2

0

− u2(0),

b2ρ
1/3
c =

3ρ2

2G2
0

w′′
22(0) − 3ρ

2G0
w′′

21(0) +
J ′′

0

(1 − ε)βJ2
0

,

B4ρc =
5ρw41(0)

2G0
− 15ρ2w42(0)

4G2
0

− u4(0),

D4ρc =
9

4G0

[
w21(0) − 2ρ

G0
w22(0)

]2

.

(14)

In (14), we have

G0 = − 1
β(1 + ε)J0

+ v2(0),

v2(0) =
ρ

2!
(ρh2(0) + 1),

u2(0) =
ρ

2!
,

u4(0) =
ρ

4!
(3ρh̃2(0) + 1),

w41(0) =
ρ

5!
(3ρ2h̃3(0) + 7ρh̃2(0) + 1),

w42(0) =
ρ

6!
(
3ρ3h̃4(0) + 16ρ2h̃3(0) + 15ρh̃2(0) + 1

)
,

(15)

and b2 has been calculated using the representation v2 = v2(0)− k2v′′2 (0), wnm = wnm(0)− k2w′′
nm(0), and

Jk = J0 − k2J ′′
0 . The zeroth and second moments of the attractive part of the interaction potential are

found from the relations

βJ0 =
∫

J(r) dr =
4πd3λ3

3T ∗ ,

βJ ′′
0 =

1
6

∫
r2J(r) dr =

λ2d2

10
βJ0

(16)

with the effective temperature T ∗ = kBT/J .
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The zeroth and second moments of w21 and w22 can be expressed in terms of those of the correlation
functions h̃l(0),

w21(0) =
ρ

3!
(
ρh̃2(0) + 1

)
,

w′′
21(0) =

ρ2

3!
h̃′′

2(0),

w22(0) =
ρ

4!
(
ρ2h̃3(0) + 3ρh̃2(0) + 1

)
,

w′′
22(0) =

ρ

4!
(
ρ2h̃′′

3(0) + 3ρh̃′′
2(0)

)
.

The function h̃2(k) is representable via the Fourier transform of the direct correlation function c2(k)
of the base system, h̃2(k) = c̃2(k)/(1 − ρc̃2(k)). Expanding the Fourier transform c̃2(k) as a Taylor series,
c̃2(k) = c̃2(0) − c̃′′2(0)k2 + . . . , we obtain

h̃2(k) = h̃2(0) − k2c̃′′2 (0)(1 + ρh̃2(0))2,

whence follows the relation h̃′′
2 (0) = c̃′′2 (0)(1+ρh̃2(0))2. To calculate c′′2 (0), we use the Wertheim–Thiele an-

alytic solution of the Percus–Yevick equation for the direct correlation function of the hard-sphere system.5

This results in the expression

c̃′′2 (0) =
1
6

∫
r2c2(r) dr = −πd5

120
(16 − 11η + 4η2)(1 − η)−4

for c̃′′2(0).

In contrast to h̃′′
2 (0), the expression h̃′′

3(0) cannot be written in terms of the compressibility of the base
system. For h̃′′

3(0), we have the formula

h̃′′
3(0)k2 =

∫
h3(r1, r2, r12)

[
(kr1)2

2
+

(kr2)2

2
− (kr1)(kr2)

]
dr1 dr2, (17)

where r12 = |r1 − r2|. Formula (17) shows that to calculate h̃′′
3(0), it is required to know the second (rather

than the zeroth) moment of the three-particle correlation function. By (8), the expression h3(r1, r2, r12) can
be written in terms of the three-particle function g3(r1, r2, r12), whose analytic representation is unknown.
But the calculations can be performed using some approximations, e.g., the superpositional approximation

g3(r1, r2, r12) = g2(r1)g2(r2)g2(r12). (18)

5According to [31] and [32], the direct correlation function of the hard-sphere system has the form c2(r∗) = 0 for r∗ ≥ 1

and c2(r∗) = (1− η)−4
{
−(1 + 2η)2 + 6η(1 + η/2)2r∗ − η(1 + 2η)2r∗3/2

}
for r∗ < 1, where r∗ = r/d and d is the diameter of

the hard spheres.
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Fig. 2. Comparison of the data obtained for the λ-line theoretically (solid line) with the results of

experimental numerical calculation using the Monte Carlo method (dashed lines). The parameter values

are ε = 0.72 and λ = 1.5.

Numerical calculations of the coefficient b2 using approximation (18) showed that b2 is positive in the
domain we are interested in for any values of the system parameters.

We have thus constructed the effective LGW Hamiltonian for a symmetric binary fluid. Using a similar
argument, we can obtain analytic expressions for the coefficients of an arbitrary order with respect to the
field variable. We note that the resulting Hamiltonian involves two different fourth-order terms with respect
to the field variable that are proportional to the corresponding expressions σ4 and σ2〈σ2〉.

As an example of applying the effective field theory Hamiltonian, we consider the mean-field condition
for the critical point according to which the coefficient in the second power with respect to the field must
vanish as the temperature tends to the critical value, i.e., a2 = 0. We rewrite expression (14) for a2 as

3ρ
2G0

[
w21(0) − ρ

G0
w22(0)

]
= ρ− 1

(1 − ε)βJ0
. (19)

Formula (19) corresponds to the actual mean-field condition under which the field is assumed to be constant
throughout the system volume, i.e., σ(x) = σ0 and 〈σ2〉 = σ2

0 . In this case, the Hamiltonian (or the free-
energy density [4]) has the form H = a2σ

2
0 +(B4 +D4)σ4

0 . Use can also be made of a more complicated self-
consistent condition imposed on the critical point taking the field fluctuation in the Gaussian approximation,
a2 + D4〈σ2〉c = 0, into account. (Here 〈σ2〉c is calculated at the critical point.) But this approximation is
not as simple and convenient as (19). Using (19), (15), and (16), we calculated the dependence of the critical
density on the critical temperature along the critical layering curve, i.e., the λ-line, in the case of particle
interaction described by a rectangular potential well. The calculation results are presented in Fig. 2, where
the λ-line found numerically by the Monte Carlo method for the parameter values ε = 0.72 and λ = 1.5 [24]
is also shown. As is seen, resulting mean-field relation (19) agrees well with the numerical experiment. It
turned out that the coefficient B4 can take both positive and negative values along the λ-line. In this case,
the coefficient B6 is always positive. (We do not present the analytic expression for this coefficient because
it is very cumbersome.)
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3. Conclusion

In this paper, a method is suggested for constructing an effective field theory Hamiltonian of the LGW
type for off-lattice models of binary fluids. It is based on using an integral transformation of variables of
the Hubbard–Stratonovich type. In contrast to the Hubbard–Stratonovich transformation, however, this
method does not require the existence of the inverse operator for the singular part of the potential describing
the interaction between the impenetrable particle cores. This permits considering off-lattice fluid models
with a specific form of the interaction potential for hard cores.

We have shown that for a symmetric binary fluid, all coefficients of the effective Hamiltonian can be
expressed in terms of the compressibility and its derivatives with respect to the density of the “support”
system possessing only repulsive interactions. In the case of repulsive interactions modeled using hard-
sphere interactions, there exist very accurate analytic expressions for these derivatives. Calculations were
performed for a symmetric binary mixture with an interaction potential of the type of a rectangular potential
well, and several first coefficients were determined for the effective LGW Hamiltonian. The curve of critical
layering points (the λ-line) was found in the mean-field approximation, and it turned out to agree well with
the numerical experiment results obtained using the Monte Carlo method.
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