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Certain facts indicating that rather simple systems
demonstrate not only periodic dynamics but also very
complex and irregular behavior have been known for more
than twenty y(—zars.1 However, it was only starting from the
time the "strange attractor" concept introduced by Ruelle
and Takens? was linked with the Lorenz model that there
was hope that complicated effects in real systems, such as,
for instance, turbulence, may be explained by using the
"strange" attractor concept. Further studies of actual
models showed that notwithstanding the extraordinary
diversity of nonlinear physical systems the number of most
widespread means of making the transition to irregular
behavior when parameters are changed was quite small
One encounters most often a transition through the bifurca-
tion of period doubling. An important fact is they experi-
mental discovery of these bifurcations in real systems.
Hydrodynamics gives us beautiful examples of the forma-
tion of structures of ever increasing complexity: this is
the observation of a hierarchy of instabilities between
rotating cylinders® and in thermal convection,®

Can a system with a strange attractor be acted upon in
a manner weak enough for it to behave predictably or to be
controlled? Earlier studies™® gave us some definite in-
formation.

In the present paper we show that by using a weak
periodic action on the system parameters we can switch
it from a stochasticity regime caused by the presence of
a strange attractor into a periodic regime, We considered
a set of equations describing the dynamics of a simple
aqueous ecosystem consisting of two forms of microalgae
and two forms of zooplanktons:
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Here M, M; and M,, ‘M'2 are the biomasses of the forms of,
respectively, the first (phytoplankton) and second (zoo-
plankton) trophic level (the biomasses are expressed in
units of the limiting biogenic element); My=M — (M, + M, +
M; +M,) is the amount of limiting biogenicelementinthe
reservoir; M is the total mass of the limiting biogenic
element in It‘he whole system which is assumed to be con-
stant; ¢y, €, €5, and e; are the mortality coefficients of

the corresponding forms, v, }‘; and vy, Y; are, respectively,
the coefficients of consumption and utilization by the forms
of the second trophic level of forms of the first level; 3
and 3" are photosynthesis coefficients; and a,a' and b, b
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* Ccentrol of a system with a strange attractor through periodic

are saturation coefficients, In previous papers®:!® we have
shown that for well-defined parameters this system has a
stochastic regime caused by the presence of a strange
attractor in its phase space; this regime is obtained through
successive period doublings.

Including the 8 in the free parameters, we found by
means of a numerical experiment that when ¢, =¢,= v, =
'
Yy=1, ¥, = € =¥ =€,=2, @ =a=b=b' =0,225, and M =18 in
the region B, =0.99 <8 =p' < 1.26=5, there is a self-sto-
chastic regime. We show in Fig. 1 theprojection of the
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FIG. 1. Projection of the phase curve
of the system (1) onto the ki, My )co-
ordinaie plane for By= 1.125 and 8y= 1.
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FIG. 2. l'rojection of the phase curve
of the system (1) into tne (Mg, My
101 coordinate plane for 9y= 1.125, 3;=
n.127, and « =1.277.
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FIG, 3. The funcrion My(D) of the system {11 for 8= 1.126, 4 =
~a0), and b=t .
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phase curve which corresponds to that regime for 8=

(7, '3,)/2=1.125. We assume that the parameter § in
svstem (1) changes periodically with time, i.e., =08+
_:in wt. In Ref. 8 it was shown that for 8,=1.125, 8, =
.13, and several [requencies w of the system reaches a
regular regime (destochastization). However, the 8, deper.-
dence of the transition of the system to that regime was
not studied there. From a physical point of view, it is
clearly of most interest to find that range of variation of
!, for which 8 does not leave the bounds of the stochasti-
city region, i.e., the region 18,1< (f:-B,)i2. Detailed
analysis has shown that, indeed, for different values of
J, lving in that range there is a parametric destochastiza-
tion. The frequencies for which this is observed turn out
to be close (within the second sign) to the natural frequen-
cies of the linearized system (1) for the above-defined
coefficients €, ¥, a, b, 8, and M,

Figure 2 shows the phase portrait of system (1) for
p=1.125, §;,=0.127, and w=1.277. Similar results are
alsog nhserved at the same frenuencv far smaller values of
sy, Thne threshold value of |3, below which there is no
transition to the regime of regular motion (for that value
of &), is | By | = 0.101. One must at the same time note
that for the threshold value of the parameter §, the locking
into the regular regime in the parametric destochastization
iz slightly asymmetric relative to the initial phase of the
perturbation. For the negative threshold value of 3, the
destochastization frequency is «_ =~ 1,274, whereas for the
positive threshold value of 3, (for the same B;) it is some-
what different. If we fix both 8 and w=w,, then by going
region [B] < 0.101, i.e., by decreas-
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from |8,] =0.101 the system will have a regime which is
similar to a regime with intermittence (see Fig. 3). It is
clear from the figure that a! a certain time the system
locks into a regular regime (L= 575). At other, generaliv
random times, there is a disruption, i.e., the svstem leaves
the regular regime, A further lowering of 3, brings un the
stochastic regime in the system,

We wish to emphasize that a study of the behavior of
system (1) as to stochasticity and regularity was in all
cases carried out by us (numerically) using criteria such
as the Kolmogorov entropy, Poincaré cycle mapj:ing, and
spectral analysis. .

One can thus conirol a system which is in a stochasti-
city region by bringing it into a regular regime through a
weak external periodic action.
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