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Abstract— We develop an analytic approach to the problem of the behaviour stabilization of dynamical
systems by parametric perturbations. First, questions of realization of the stable dynamics in non-
chaotic systems with continuous time are studied. It is analytically shown that by means of parametric
perturbations it is possible to obtain the stable periodic behaviour in systems which do not possess
stable oscillations in the autonomous case. Then, on the basis of these results we advance the following
conjecture: assume that a system has a chaotic attractor. Then, if we successfully choose a parametric
perturbation of such a system in those regions where its behaviour is chaotic, then one can expect
that this perturbation leads to the appearance of the stable periodic orbits which are either unstable or
non-existent in the initial unperturbed system. We present rigorous results which assert that for some
discrete time dynamical systems such a conjecture is valid: for certain families of mappings it is possible
to find perturbations that lead to stabilization of their chaotic dynamics. In the framework of such
an approach we offer a goal-oriented non-feedback way for stabilization of the desired stable periodic
behaviour. Copyright ©1996 Elsevier Science Ltd.

1. INTRODUCTION

Nowadays a problem related to controlling the evolution of dynamical systems with complex
behaviour attracts the attention of many authors (see, for example, [1], [2] and [3] and references
therein). In such investigations the form of dynamical systems is as follows

X = v(X, o), Y]

where x € R”, o € A4 and the components «; of the vector & are parameters. Without loss
of generality we admit that only one parameter, oty = «, can be varied. Let us suppose that
for any admissible values of parameters from A4 the system dynamics is not acceptable with the
applied point of view. For example, if for all possible & € A. C A system (1) possesses chaotic
attractors (i.e. prediction of its evolution is difficult) or the function v(x, &) does not have stable
critical elements, then for ecological, chemical and some other systems it is required to avoid
similar behaviour. In these cases one should find a certain control action leading to appearance
the desired dynamics. In other words, it is necessary to realize the control of the system dynamics
through the transformation of the function v(x, &) such that a new system

X =V (X, & 1) 2
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would be characterized by the required behaviour.

In the control theory two methods of transformation of the right-hand side of system (1) are
known: (1) the open-loop control and (2) the feedback control. In the first case the control is
realized by (a) force perturbation, v'(x, &, t) = v(x, &) + g(¢), and (b) parametric perturbation,
v (X, & t) = v(x, &+ ot;(2)). For periodic perturbations, g(¢) and & (¢) are T-periodic functions,
g+ T)y=g@), c;(t +T) = oy (¢).

In the second case an external force and the parametric control action are functions of the
dynamical variables, i.e. (a) v' (X, &, ) = v(x, &) + g(x(7)) and (b) v (x, &, £) = v(x, x(x(T))).
Moreover, for the feedback control the change in the external forcing or the control parameters
depends either on the current system state, T = ¢ (i.e. the momentary feedback is realized), or on
its previous state, T > ¢ (i.e. the delayed feedback is established).

For chaotic systems the feedback parametric method has been proposed by Ott et al. [4] and
later developed by many authors (see, for example [5], [6] and also [2] and references therein). The
non-feedback parametric way of stabilization of the chaotic behaviour (in fact, chaos suppression)
in dynamical systems has been apparently proposed by Alekseev and Loskutov [7,8]. Somewhat
different approaches have been investigated by Lima and Pettini [9] and Kivshar ez a/. [10]. The
original goal-oriented methods of controlling chaotic behaviour have been described by Hiibler
[11], Luisher and Hiibler [12], Jackson and Hiibler [13,14] and by Pyragas [15,16].

Unfortunately, for certain systems (for example, chemical and biological) realization of the
forcing control is quite difficult in applications (if it is possible at all). Often in such systems the
dynamical variables x; are proportional either to the total mass or the relative mass of the reacting
substances. Then v(0, ®) = 0, and the hypersurfaces x; = 0 are invariant. With such a setting
up problem, system (1) only describes the real processes in the region G = {x | x; 2 0, >, x; <
M}, M = const. In this case the force action can lead to the fact that phase trajectories can
leave the region G crossing the hypersurface x; = 0. Therefore the parametric control is only
admissible here. In turn, the feedback method requires specification of the system state, which
is quite difficult in certain cases. This is why it is desirable to exclude feedback. Although such
a method seems to be more simple than others, a satisfactory theory describing the possibility
of obtaining the desired behaviour of the chaotic system and an explicit form of the periodic
alteration of the parameters is absent.

In the present paper, for some classes of dynamical systems we analytically investigate the
problem of the behaviour stabilization by means of parametric perturbations and thus, we hope
to make up for a deficiency in the theory. Finally, we offer use of our feedback-free method for
stabilization of the desired periodic orbits and therefore, to realize the goal-oriented control of
dynamical systems.

2. PERTURBATIONS OF NON-CHAOTIC DYNAMICAL SYSTEMS

Let us consider some assertions concerning the parametric action on the systems which do not
have stable periodic behaviour. We study the following two systems of equations,

xX=y,
1
y=oy[x*(1 +2a) — gl-al-x, (3)
and
xX=y,

y=—ay(x* +ax+1) —x, ()]
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Fig. 1. The Poincaré map T = 0 for system (5) at & = (max(hy, h2), h3).
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Fig. 2. The Poincaré map 7 = 0 for system (5) at 4 € (&3, hq).

in some bounded domain Uy, where « satisfies the inequality 0 < & < 1, and a is a control
parameter. These systems are equivalent to the system of the Van der Pol type; similar systems
are often used as a mathematical model of certain non-linear radio physical generators [17].
First let us dwell on system (3). The structure of the domain Uj in (3) is sufficiently simple. To
wit,
(a) for a < —1/2 system (3) has the unique stable focus;
(b) fora € (—1/2, 1) except for a stable focus, in (3) there exists an unstable periodic orbit. Note
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Fig. 3. The Poincaré map T = 0 for system (5) at & > hy.

that in a zero approximation in &, the periodic orbit has the radius r = [(1—a)/(1 +2a)]'/*
and therefore for a — —1/2 this periodic orbit cannot lie in the domain Up;
(c) for a > 1 the domain Uj contains only one unstable focus.
Thus, system (3) does not possess non-trivial stable periodic orbits for any bounded a. Let us
introduce the parametric perturbation of period T = 27r/w in (3) in the following manner:

xX=y,

1
y= ay[x*(1 + 2hcos2wT) — §(1 —~hcos2wT)] — x, ®)
T=1,

where 4 is an amplitude of perturbations, w = 1/(1 + an)'/? and > 0 is a constant. Equations
(5) are determined in a bounded domain U = Uy X R/TZ containing the origin, where Uj is
a domain of the Euclidean space R*. Also, system (5) can have in U a so-called trivial periodic
orbit LY, ie. a set 0 X R/TZ. Now, going to the truncated system by means of a change of
variables, 6 = wT, x = bcos(@ + 8) and the average procedure, we get

db b, h

— = =oa—(b* - + =—cos2

a0 oB(b, @) 0(16(b 1)(1 5 cos2Q) ,

do n_ h, _, .

— = =o[=+ =< + 2] . 6

10 x® (b @) a[2 + 32(5b 1)sin2¢] (6)
It is known [18] that the steady-state solution by, @y, that is

a(B, P)
0(b, @) | b=y, p=p0

corresponds to the periodic orbits of system (5) in the order zero of the perturbation theory, and
the stability of these orbits agree with the stability of solution (7). Moreover, the bifurcation values
of the parameter 4 in (6) are coincident with the corresponding values for system (5) up to O(x).
Thus, by analytical methods one can find a qualitative modification of the system dynamics when
the amplitude # increases. We illustrate this phenomena by Poincaré mapping 7 = 0. Namely,

B(bo, o) = ®(by, y) =0,

* 0, N
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(1) At h = 0, system (5) possesses the trivial stable periodic orbit LY and an unstable invariant
torus Tor?.

(2) At A€ (0, min(2, 8n/3)) on the torus Tor? saddle unstable periodic orbits can appear with
periods more than 7.

B Ufh=h =2+ 6(U ) (where S8(U) is introduced in connection with the finiteness of Up)
then, except for L] and Tor?, there are two stable periodic orbits Ll and LI of the period
T in the domain U (Fig. 1). Wlth increasing 4 the periodic orbits L, L] are monotonically
pulled to LY.

(4) Forh=hy, = 8n/ 3 on the torus Tor?, two palrs of the perlodxc orbits appear: two of them
are saddle, L] and L], and two are unstable LT and LT. Note, that if n < 3/4 then items
(3) and (4) are interchanged.

(5) When h = h3 = 2[1 + (4n/ 3)211/2 confluence of the stable periodic orbits L] and L2 with
the saddle ones LT and L], respectively, takes place so that the periodic orbits LI and L]
become stable (Fig. 2), and the orbits L7 and L] become saddle.

(6) For h = hy = 2[1 + (8n )2]172, the orbits LT, LT and L{ stick together. In this case the
trivial perlodlc orbit L] becomes saddle.

(7) For h > h4 in system (5) there are the saddle trivial perlodlc orbit LY, the stable periodic
orbits L and L] and the unstable periodic orbits LY and LT (Fig. 3).

Let us now consider system (4). It is easy to come to a conclusion that for any bounded
parameter value of @, this system has only the unique stable focus. Introducing a parametric
perturbation as follows:

X=y,
y= —cxy[x2 + (1 + hcos3wTt)x + 17, 3
T=1.

For this system the trivial periodic orbit L] is always stable and for 4? < B =8[1+(1+n?)'1?]
there are no the other stable trajectories in U. At 2 = #? bifurcation of the birth of three pairs
of periodic orbits takes place: three of them are saddle and the others are stable. In the Poincaré
mapping T = 0, this gives the appearance of three saddle-nodes; each of these saddle-nodes is
then decomposed into a saddle and a stable node. The distance p from these orbits to the trivial
state can be calculated as follows:

ht — 8 — \Jh? — 16h% — 64n?
Pl = Y ; T4 o),

K2 =8+ /h — 16K — 64n°

0} +0(x) .
Thus, in the parametrically perturbed system (4) there are three non-trivial stable periodic orbits.
Remark 1. Tt should be noted that in view of the small parameter « the nearer the modulus of
the multiplicator of the unstable periodic orbit to 1, the smaller the amplitude of the parametric
perturbation (required for the appearance of stable periodic behaviour) can be.
Remark 2. It is easy to obtain a similar result for the systems of higher dimensions. For example,
for systems which can be described by a direct product of (5) or (8) and the equations of the form
y = Ay, where A is a matrix having the eigenvalues with negative real parts, there is a parametric
perturbation leading to the appearance of stable periodic orbits.
Remark 3. In the case o — 0 the distance p does not tend to zero. This means that for a small
enough «, stable periodic solutions have a finite amplitude.

Thus, for a certain class of dynamical systems which in autonomous cases do not possess stable
periodic orbits, it is possible to find the stabilizing parametric perturbations.
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Fig. 4. The region of parametrically stabilized behaviour in the Rossler system (9).
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Fig. 5. A chaotic trajectory of system (9) at @ = 4.46 (a) and the stabilized periodic orbit at
ho = 4.46, h; = 0.21 and w = 1.62106 (b).

3. PERIODIC PERTURBATIONS OF CHAOTIC DYNAMICAL SYSTEMS

The results obtained in the previous section allow us to advance the following conjecture:
» Suppose that a system possesses a chaotic attractor. As is known, such types of attractors
contain a set of saddle periodic orbits. Then, if we can correctly find the frequency of
the parametric perturbation, then for certain amplitudes it is possible to obtain the stable
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Fig. 6. The bifurcation diagram of the stabilized periodic orbits in the perturbed Réssler system
(9) at the variation of the amplitude 4.

periodic motion which either did not exist in the initially unperturbed chaotic system or
was unstable.
This section is devoted to the substantiation of this conjecture. First let us describe one of the
numerical results concerning the stabilization of chaotic behaviour [8]. Consider as an example
a non-linear system of the following differential equations:

fC] = —X2 — X3,
X2 =X +Xx3/5, )
X3 =—ax3+x;x3+1/5,

which is known as a Rossler system [19]. System (9) was used as the simplest mathematical
model of some oscillatory chemical reactions [20]. Let us introduce the parametric perturbation
as follows: a — hy + h; sinwt, where by = (&' +d')/2, hy < (d" —4d')/2, and &', a" are the
boundary points of one of the chaotic regions A4, in system (9). The latter assertions are necessary
to guarantee that the perturbed Réssler system remains within 4. By numerical investigations
one can casily find that the chaotic set 4. appears via period doubling bifurcations and 4, =
(a"”,d’") = (4.22, 4.69). Carefully selecting the frequencies w of the perturbation we can find the
region of stabilized behaviour of system (9) (Fig. 4). In this region it is possible to stabilize the
unstable periodic orbits embedded in the chaotic attractor and thus, to realize the goal-oriented
control without feedback [Fig. 5(a) and(b)]. This is due to a special form of the right-hand side
of the Rdssler equations (9) [31]. Varying the amplitude /; or the frequency of the perturbation
we can get the stabilized periodic orbits (Fig. 6) of one or another period. It should be noted
that the amplitude of perturbation 4, < hy, i.e. the obtained controlling, should be realized by
a small enough perturbation.
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Thus, to realize a periodic behaviour in some chaotic flows it is sufficient to apply a weak
parametric perturbation within the chaoticity region. However, it would be much more interesting
to develop an analytic approach to this problem. The rest of this section is devoted to description
of such an approach. We rigorously show that for certain maps it is possible to find external
parametric perturbations leading to stabilization of the behaviour. However, first of all, let us
dwell on the general properties of maps with external perturbations.

Usually n-dimensional maps have the form

T, x~ f(x,a), (10)
where f = { f1,..., f4} is a certain function, x = {x),... , x,} and @ € 4 is a control parameter.
Let us introduce a parametric perturbation G : 4 — A of map (10) as follows:

G:a— gla), a€ A (1D

Let us confine ourselves by the periodic (i.e. cyclic in the parameter a) perturbation with period
T: v =gla), i=12,...,7-1, a =gla;), a; # ajfor i+ j, a,€ A4, 1 <i<7. Inthis
case we get the following result:
Proposition 1 ([22,23]). The period of an obtained periodic orbit in the periodically perturbed
map (10) is always multiple to the period of the perturbation.

However, the following remark should be noted here. Introduction of a perturbation means
that we consider an (n + 1)-dimensional map:

_{x~fxa),
T_‘Iawg(a), a € A, (12)
and a projection of this map onto the coordinate plane (x), ... , x,) is the perturbed map (10).

In general, the projection of the period ¢ orbit onto the coordinate plane is also an orbit of
period ¢. However, at this type of projection specific (degenerated) cases may occur, when two or
several points are projected onto one and the same pointsin (x|, ... , x,). Then the representative
point of the perturbed map hits at several points forming a periodic orbit twice or several times.
For example, for ¢+ = 2 it is possible to observe only one point in the projection (x, ... , x,).
Naturally, such specific periodic orbits cannot be called periodic orbits in the usual sense.

Now we consider the following useful construction which can facilitate the study of perturbed
maps. T-cyclic transformation (11) means that the perturbed maps can be rewritten as follows:

T, x—fx,a) =1y,

Ty, x—f(x,a) =1,
T= . (13)

Ta, i x — (X, a;) =17 .
Consider the T functions of the following form:

Fy =f:(f1 (.. (f1(x))...)),
F, = fi(f-(f - (. f3(F2(x))...))),
. (14)

Fr = fr i (fro2(fi (£ (X))...)),

where x = {x[,... ,x,} and f;, = {f,-('),... ,fi(")},Fi = {F,—m,... ,F,»(")}, i=1,2...,Tare the
n-component functions. Thus, one can rewrite the perturbed map (12) in the form:

Ty :x~Fi(xa...,ar),
T :x—Fxay..., ar),

(15)

TT X e FT(x:(ll;-~~ ,aT);
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for which the initial conditions are determined as follows: x; = f1(xg), X2 = HH(Xx1),..., X7 =
fr_1(xr_2). It turns out that this construction can essentially simplify the study of the perturbed
maps. It follows from:
Proposition 2 ([23]). If the map T}, 1 <k < T has a periodic orbit of the period ¢ and the
function fi (x) is a C%-function then the map 7,, p = k + 1 (mod T), also has a periodic orbit
of the same period ¢. Moreover, if
(i) a periodic orbit of the map 7} is stable then a periodic orbit of the map 7, is stable as well;
(i1) fi is a homeomorphism then the maps T; and T, are topologically equivalent.

Thus, the initial perturbed map is decomposed into T independent maps which do not connect
with each other, except for the initial conditions. Therefore, instead of the investigation of the
perturbed maps (12) or (13) it is sufficient to consider one of the maps 71, ... , T+ (15). This fact
is the basis of our analytic approach to the problem of the stabilization of chaotic dynamics in
certain non-linear systems, It is clear that it is extremely difficult to get analytical results regarding
suppression and non-feedback control of the chaotic behaviour in general. However, we can find
an exact solution of this problem for some classes of maps. We give elements of such an approach
on the examples of one- and two-dimensional maps.

Let us assign the periodic perturbations with period T to the values @ = (ay,..., a). Then
theset A={G€EA®A® ---®A:a #a;, 1 <i j<T i+ j}corresponds to a totality

T times
of periodic perturbations of the period T operating on A. Suppose now that every parameter
in the set {@;}, i = 1,2,..., T, corresponds to chaotic dynamics of the unperturbed map (10).
In other words, let us introduce into consideration a chaoticity set 4. C A such that if in (10)
a=a € A, 1 <i < T, then it exhibits chaotic properties and thus, it does not have stable
periodic orbits. Furthermore, let us introduce the set A. = {a e LA(. RA. Q-8 A", Lap #F

T times
aj, l <ij=<7 i+ j}.
Let us consider the quadratic maps family

Qs x — ax(l —x), a € (0,4], (16)
and a family of piecewise linear maps
: gla)x + r(a) , 0<x<a,
Fa YH{p(a)(l—x), a<x<1, (17)

where g(a) = (1 — a)/[a(2 — a)], rla) = 1/(2— a), p(a) = 1/(1 —a). It is known that for
map (16) there exists a chaoticity set A, of the positive measure [24,25]. As to map (17), for any
a € (0,1) = A, it has the chaotic behaviour [23].
Theorem 1 ([35,23]). There is a subset A4 of the set A. such that if 4 € Ay then the perturbed
maps (16) and (17) possess stable periodic orbits.

Tllustrations of this theorem for the perturbed map (16) are given in Figs 7 and 8. The analogous
statement holds true for a certain class of two-dimensional maps including maps having the
most pronounced chaotic behaviour. In turn, exhibition of such strong properties of chaoticity
is possible if the system possesses a hyperbolic type of attractor. We shortly clarify the sense of
this result for a map with the hyperbolic attractor following the recent results by Loskutov and
Rybalko [23].

Remember that a compact invariant set A is said to be a hyperbolic attractor if it is an at-
tractor and simultaneously is a hyperbolic set of the dynamical system, i.e. the tangent space is
decomposed into two subspaces E* and E* which are defined by the facts that infinitesimally
close trajectories corresponding to the subspace E* exponentially converge with ¢ — +co, and
trajectories corresponding to the subspace E* exponentially converge with ¢ — —oo. The hyper-
bolic attractor is characterized by the property that it is a structural stable subset. Moreover,
systems with hyperbolic attractors are models of the physical systems with the rigorous chaotic
properties [27,28].
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Fig. 7. One of the stable fixed points of two-periodic perturbed map (16), a; =
3.67857336... ., a» = 3.97459125... , ay, a2 € A,.

Fig. 8. The stable periodic orbit of two-periodic perturbed map (16).

Consider a quite simple construction of the map having the hyperbolic attractor [29] which
has been proposed by {30} in the context of investigation of radio physical systems.

Let Q = {(x,») : | xI< 1, | y|< 1} be a square in the plane (x, y). Then the hyperbolic map
T is given by the following construction:
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) A+ -1, p+D/A -1, () € QL
T S = DD n b G e 09

and the areas Q;, O, are presented as the separation of the square Q by the function u(x) into
two parts,

Or={x,») €0: y<ulx},
O ={(xy)eQ:y>ux},

where u(x) is defined in the interval [—1, 1] such that | u(x) |< 1. In addition, the constants
Ay, Az, A3, A4 and the function u(x) are chosen in such a way that 79, C Q, T(Q» C Q.
We consider the simplest case u(x) = ax, A} = A3, 1/Ay = 1/A4 = Ay, ie.
Ax+1) -1, L+ 1) —-1), y<ax
T: (x,y)~ flx,y) = { 19)
Ax—1D+1, Lp—-D+1), y>ax

| a |< 1. It is not difficult to obtain the existence conditions for a hyperbolic attractor in map
(19). 1t is the fulfillment of the following inequalities:

0<A <1/2,
1<A<2/(+|al), (20)
lal< 1.

Now it is easy to generalize map (19) for the case | a |> 1. It can be done by the substitution
x — yand a — 1/a. Thus,

Aix+1) -1, AH(py+1)~=1), y>ax,

T: (x,p) = flx,») ={ 2D
Ax=D+1 Ay-1)+1), y<ax

In this case the hyperbolicity condition (20) is rewritten as follows:

<A <2/0+1/}al,
0<Ay<1/2, (22)

lal>1.

We study the simplest case of two-periodic perturbation, @ = (a1, a2) € A.. Then the perturbed
map (19), (21) is constructed as follows. First of all, it is necessary to take into account that in
switching the control parameter we must comply with the condition of hyperbolicity. It is possible
if the parameter « is altered near the value a = 1, i.e. @1 < 1 and a; > 1. Simultaneously it is
necessary to vary the parameters A; and A;. Observing these conditions, the perturbed map is
written as follows:

(23)

7. Y =Sl ALAL X, p) o flan, AL AL x, y)
(x,9) = fla, AL AL x, p) o flag, AL AL x, p)

One can see that the points P, = (1,1) and P, = (—1, —1) are the fixed ones for both the
unperturbed map under the conditions (20), (22) and the perturbed map. It is obvious that for
the unperturbed hyperbolic map they are unstable. Let us show that in map (23) Py, P; are stable
fixed points. Really, the differential of the perturbed map (for the add and the even iterations) is
the following matrix:

. AT 0 ALOY  [AIA} 0 Y _/Af o0
DT‘(OA%)'(OA; =\ o Al 2(02\;‘>~ 24)
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Therefore its eigenvalues A| and AJ (see (20), (22)) are varied in the range 0 < A < 1/(1 + 1/
laz ), 0 < AF < 1/(1+ | a1 |). Tt means that | A |< 1, | AF |< 1, i.e. the fixed points P and
P, of the perturbed hyperbolic map become stable after perturbation, and almost all trajectories
are attracted to them with time.

Therefore, in spite of the fact that the system dynamics has the most pronounced chaotic
properties, there are parametric perturbations capable to stabilize such a type of the behaviour.
However, as to stabilization of unstable periodic orbits embedded into hyperbolic attractor up
to the present this problem remains to be explored in the framework of the described approach.

4. CONCLUDING REMARKS

Thus, we have shown that for a class of dynamical systems it is possible to find multiplicative
perturbations leading to stabilization of initially unstable behaviour. The described approach has
an advantage over the other ways because it gives us a method of the analytical detection of the
possibility of chaos suppression for a practically arbitrary map under external perturbations. In
fact, introducing T functions of the form (14) one can rewrite the perturbed map as (15). Beginning
with the first iteration ¢ = 1 and step-by-step searching through the parameters gy, ..., ar in the
set A4, all fixed points of the map 7} should be determined and among them the stable ones
should be found. If at the given ¢ the map 7; does not have the stable fixed points then it is
necessary to increase ¢ by the unit and to repeat the whole calculation. This procedure is followed
until the values a4, ..., a; € A, are found.

Besides, by means of the solution of the inverse problem for the perturbed dynamical system
decomposed into T subsystems, the present feedback-free method allows us to stabilize the de-
sired periodic orbits, i.e. to realize the goal oriented control. Thus, we can apply the described
theoretical approach to the development of the non-feedback controlling behaviour of dynam-
ical systems [31]. Moreover, the obtained results can be applied to the problem of information
processing [26], chains of coupled automata and the self-organization problem [33,21,34].
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this paper in this issue and Professor Ya. G. Sinai for useful discussions.
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