
DISCRETE AND CONTINUOUS Website: http://AIMsciences.org
DYNAMICAL SYSTEMS–SERIES B
Volume 6, Number 5, September 2006 pp. 1157–1174

PARAMETRIC PERTURBATIONS AND NON–FEEDBACK
CONTROLLING CHAOTIC MOTION

Alexander Loskutov

Physics Faculty, Moscow State University
119992 Moscow, Russia

(Communicated by Miguel Sanjuan)

Abstract. In this paper we generalize analytic studies the problems related
to suppression of chaos and non–feedback controlling chaotic motion. We de-
velop an analytic method of the investigation of qualitative changes in chaotic
dynamical systems under certain external periodic perturbations. It is proven
that for polymodal maps one can stabilize chosen in advance periodic orbits.
As an example, the quadratic family of maps is considered.

Also we demonstrate that for a piecewise linear family of maps and for
a two-dimensional map having a hyperbolic attractor there are feedback-free
perturbations which lead to the suppression of chaos and stabilization of certain
periodic orbits.

1. Introduction. In the last few years an unexpectedly interesting property of
chaotic dynamical systems has come to light: weak external perturbations can
qualitative change their behavior. It was found that chaotic dynamics is surpris-
ingly pliable to certain actions. Such problems as controlling chaotic motion [1] and
suppression of chaos [3, 4, 2] are related to this phenomenon. Due to important
and profitable applications (see [5] and refs. cited therein) they have attracted a
considerable interest. It is sufficient to mention the following: information pro-
cessing and communications (see, e.g., [6, 7, 8, 10]), an artificial pattern forma-
tion in chaotic spatio–temporal systems [9], a self–organization problem [11, 12],
controlling cardiac chaos and suppression of complex cardiac rhythms (see, e.g.,
[13, 14, 15, 16, 17, 18, 19] and also references therein), and other significant prob-
lems of nonlinear dynamics [5].

Apparently, the control of dynamical systems by parametric perturbations has
been first proposed in papers [3, 4]. Later, in a series of publications (see [2] and
refs. cited therein) this phenomenon has been justified analytically and studied
numerically.

As is known, qualitative changes in the behavior of chaotic systems with external
perturbations can be realized by two different ways. First of them provides the
removing a system from the chaotic state into a regular regime by means of external
actions without a feedback. In other words, this method does not take into account
the current value of the dynamical variables of the system. The qualitative different
method ensures the correction in dynamical variables according to their values and
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thus, this method involves the feedback as a component of the system. By the
established convention, the first way is called suppression of chaos (or sometimes
non–feedback controlling chaotic motion) and the second one is called (feedback)
controlling chaos. In turn, each of these ways can be subdivided into a parametric
(multiplicative) method and a forcing method.

Although there are several papers devoted to a theoretical substantiation of the
questions of the control (as reviews see [5, 2]), it would be interesting to develop a
sequential theory and establish a rigorous foundation of the possibility of the chaos
suppression and its control. Apparently, it is very difficult to make this in general.
But we may resolve such a problem for certain families of dynamical systems. These
questions are a major focus of interests for the present paper. We describe rigorous
methods of the investigation of qualitative changes in the behavior of chaotic maps
under external periodic perturbations and propose an analytical key which allows
to find such perturbations.

The article is organized as follows. First, n-dimensional maps in a general form
with external τ–periodic parametric perturbations are considered. Then it is shown
that for polymodal maps there are τ -periodic parametric perturbations which lead
to stabilization of prescribed periodic orbits. As an example, a quadratic family
of maps is considered in detail. In the next sections a one-dimensional piecewise–
linear family and a two–dimensional map having a hyperbolic type of attractor are
studied. It is shown that chaotic behavior of these maps may be suppressed by the
stabilization of certain periodic orbits.

2. External perturbations of n-dimensional maps. In general, the control
(feedback or feedback–free) of dynamical systems involves a certain additive or/and
multiplicative variable(s) which take(s) into account additive or/and multiplicative
perturbations, respectively. Therefore, first we study the properties of dynamical
systems with external perturbations.

Let us consider a n-dimensional one–parametric family of maps in a general form

Ta : x 7−→ f(x, a) , (1)

where x = {x1, . . . , xn} ∈ M, f = {f1, . . . , fn} is a certain nonlinear function, a
is a control parameter, and M is a compact invariant set. Let A be a set of the
admissible values of the parameter a. Introduce a parametric perturbation for the
map (1), G : A → A,

G : a 7−→ g(a), a ∈ A. (2)
In this case the perturbed map (1) has the form

T : y 7−→ h(y) , (3)

where y ∈ M × A, y = (x, a), h(y) = (f(x, a), g(a)). We may involve para-
metric perturbations into the system by two different ways. If an external source
is associated with a multiplicative action with respect to dynamical variables then
(multiplicative) parameters of the system are modified. If, however, external sources
are included into the model as additive terms with respect to dynamical variables
then the force perturbation takes place. Thus, depending on the type of external
actions, a certain component of the perturbed dynamical systems is modified.

Below only periodic (cyclic) perturbations are considered. Then for period τ
we have from (2): ai+1 = g(ai), i = 1, 2, . . . , τ − 1, a1 = g(aτ ), ai 6= aj for
i 6= j, ai ∈ A, 1 ≤ i ≤ τ . Now, any type of periodic perturbations with period
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τ can be associated with the following vectors: â = (a1, . . . , aτ ), â ∈ IRτ . So, the
set Â = {â ∈ A⊗A⊗ · · · ⊗A︸ ︷︷ ︸

τ times

: â = (a1, . . . , aτ ), ai 6= aj , 1 ≤ i, j ≤ τ, i 6= j,

a1, . . . , aτ ∈ A}, Â ⊂ IRτ , corresponds to all possible sets of τ -periodic perturbations
which operate on A. Note that the explicit form of the function g(a) in (2) is not
essential. For our aims it is sufficient to know that g transforms the parameter values
into an infinite series {ai} consisting of the repeated subsequences (a1, a2, . . . , aτ ).

It is quite clear that period t of any obtained periodic orbit in the perturbed
map (3) is multiple to the period τ of perturbation, t = τk, where k is a positive
integer. Really, if the perturbed map (3) has a t-periodic orbit then the coordinate
sequences which form this periodic orbit are also periodic with period t. But the
sequence {ai} is already periodic with period τ . Therefore, t = τk.

Figure 1. A periodic orbit of the periodically perturbed map (3)
in the space (x, a) (a), and in the projection onto the coordinate
axis (b).

Figure 2. A periodic orbit with coincident coordinates of the pe-
riodically perturbed map (3) in the space (x, a) (a), and in the
projection onto the coordinate axis (b).

However, there is an important remark to be made. If we project an obtained
periodic orbit onto the initial space M (i.e. when the perturbed system (3) as a
non–autonomous one is considered) then we may get in M an orbit which can not
be a periodic orbit in the usual sense. The matter is that the points of this periodic
orbit, which differ from each other only in the coordinate a, are projected onto
one and the same point in the space M . Thus, in non-autonomous systems such a
behavior can not correspond to periodic orbits because the representative point of
the map hits several times in some points forming the given periodic orbit.
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For example, for one–dimensional (n = 1) maps, in a general case, in the pro-
jection onto the initial space M = I we get a periodic orbit of the period τk
(Fig.1a,b). But in I we may obtain a orbit with the coincided x–coordinates when
xi = xm, ai 6= am, i 6= m, where (xi, ai) and (xm, am) are points of the periodic
orbit of the perturbed map (3) (Fig.2a,b). However, the described situation can be
considered as a degenerated one, and it may occur only in special cases.

Introduce a quite simple construction which is necessary for the further analysis.
Any τ -cyclic transformation for the map (1) means that the perturbed system (3)
can be written as follows:

T =





Ta1 : x 7−→ f(x, a1) ≡ f1 ,

Ta2 : x 7−→ f(x, a2) ≡ f2 ,

. . . . . . . . . . . . . . . . . ,

Taτ
: x 7−→ f(x, aτ ) ≡ fτ .

(4)

Consider τ functions of the following form:

F1 = fτ (fτ−1(...f2(f1(x))...)) ,

F2 = f1(fτ (fτ−1(...f3(f2(x))...))) ,

. . . . . . . . . . . . . . . . . . . . . . , (5)
Fτ = fτ−1(fτ−2(...f1(fτ (x))...) ,

where x = {x1, . . . , xn}, and fi = {f (1)
i , . . . , f

(n)
i }, Fi = {F (1)

i , . . . , F
(n)
i }, i =

1, 2, . . . , τ, are the n-component functions. Thus, the perturbed map (3) one can
rewrite in the form

T1 : x 7−→ F1(x, a1, . . . , aτ ) ,

T2 : x 7−→ F2(x, a1, . . . , aτ ) ,

. . . . . . . . . . . . . . . . . . . . , (6)
Tτ : x 7−→ Fτ (x, a1, . . . , aτ ) ,

for which initial conditions are determined as follows: x1 = f1(x0), x2 = f2(x1), . . .,
xτ−1 = fτ−1(xτ−2).

Thus, analysis of non-autonomous τ -periodic perturbed maps may be reduced
to the consideration of τ autonomous maps of the form (6). Moreover, to describe
the dynamics of the initial non–autonomous system it is sufficient to carry out the
analysis of only one of the functions (5) [20]. This result follows from

Proposition 1. If the map Tk, 1 ≤ k ≤ τ has a periodic orbit of period t and the
function fk(x) is a C0-function then the map Tp, p = k + 1 (mod τ), also has a
periodic orbit of the same period t. Moreover, if

i) a periodic orbit of the map Tk is stable then a periodic orbit of the map Tp is
stable as well;

ii) fk is a homeomorphism then the maps Tk and Tp are topologically equivalent.

Proof see in [20].
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3. Stabilization of the required periodic orbits and suppression of chaos.
In this Sect. we demonstrate that for polymodal maps one can stabilize the pre-
scribed periodic orbits by means of simple periodic parametric perturbations. It is
also shown that for a certain class of the piecewise linear maps and for a so-called
Belykh map, which has a hyperbolic attractor, such perturbations lead to the chaos
suppression and stabilization of certain initially unstable orbits.

Since we consider chaotic maps, let us introduce a subset Ac ⊂ A such that if
a ∈ Ac ⊂ A then the map (1) possesses chaotic dynamics. A rigorous definition of
chaos may be found in [2, 23, 24].

3.1. Polymodal maps. Consider a one–dimensional map in a general form

Ta : x 7−→ f(x, a), (7)

where x ∈ I, f is a certain function and a is a control parameter. As before, let us
introduce a τ -periodic parametric perturbation, G : A → A, G : a 7−→ g(a), a ∈
A ⊆ A, such that ai+1 = g(ai), i = 1, 2, . . . , τ − 1, a1 = g(aτ ), ai 6= aj for i 6= j.
Rewrite the perturbed map in the form:

T =





x 7−→ f(a, x) ,

a 7−→ g(a) .
(8)

Now we can get the following interesting result. Suppose that the map (8) satisfies
the following conditions:

(i) there is a subset σ ⊂ I such that for any x1, x2 ∈ σ we have a∗ ∈ A for which
f(x1, a

∗) = x2;
(ii) for an arbitrary a ∈ A there is a critical point xc ∈ σ, i.e. ∂f(x, a)/∂x|x=xc

≡
Dxf(xc, a) = 0.

It is quite clear that in this case for any x2, x3, . . . , xτ ∈ σ we can find such values
x1 and a1, a2, . . . , aτ that in the perturbed map T the periodic orbit (x1, x2, . . . , xτ )
is stable for â = (a1, . . . , aτ ). Really, let us choose the following arbitrary values
x1, x2, . . . , xτ . In view of the condition (i), the system

f(x1, a1) = x2, f(x2, a2) = x3, . . . , f(xτ , aτ ) = x1 (9)

has the solution of the form â = (a1, a2, . . . , aτ ). This means that the sequence of
the points (x1, x2, . . . , xτ ) = p is a τ -periodic orbit of the map T at the periodic
perturbation â = (a1, a2, . . . , aτ ). To stabilize this orbit p it is sufficient to choose
the element x1 in a quite small neighborhood of the critical value xc because the

corresponding multiplier β(p) =
N∏

i=1

Dxf(xi, ai) and Dxf(xc, a) = 0 for an arbitrary

a. Thus, the orbit (xc, x2, . . . , xτ ) = p is stable for xi ∈ σ ⊂ M , i = 1, 2, . . . , τ , and
parameters â = (a1, a2, . . . , aτ ) satisfying the system (9).

3.1.1. Example. Consider as an example the following quadratic family of maps in
the form Ta : [0, 1] → [0, 1],

Ta : x 7−→ f(a, x) = ax(1− x) , (10)

that is a simplest model of some nonlinear phenomena (see, e.g., [21, 22, 23, 24]).
It is well known that for a ∈ [0, a∞), a∞ = 3.569 . . ., the map (10) has only regular
behavior. However for a ∈ (a∞, 4] it can be both regular and chaotic. Let us
introduce a subset Ac ⊂ (a∞, 4] such that for a ∈ Ac the map (10) has the chaotic
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behavior. It can be proven [25, 26] that the subset Ac has the positive Lebesgue
measure and the point a = 4 is a density point of this subset.

Let us consider the periodically perturbed map (10). In previous papers (see
[27, 2] and references cited therein) it has been shown that periodic parametric
perturbations operating in the chaotic subset Âc can stabilize its dynamics.

Theorem 1. There exists a subset Âd ⊂ Âc such that if â ∈ Âd then the perturbed
quadratic family possesses stable periodic orbits.

Proof see in [27]. It is evident that for the quadratic family (10) the set σ is the
interval [xb, xe], where xb and xe are the solutions of the equation xint = f(x, 4),
and xint is the intersection point of the curves y = 4x(1 − x) and y = x. Thus,
[xb, xe] = [1/4, 3/4]. Suppose that this map has an orbit of the period t = τ , i.e.
p = (x1, x2, . . . , xt). Then the points forming this periodic orbit obey the following
system:

x2 = a1x1(1− x1), x3 = a2x2(1− x2), . . . , x1 = atxt(1− xt). (11)

To determine the parameters for which the perturbed map has the periodic orbit
p = (x1, x2, . . . , xt), it is necessary to express the values ai from system (11):

a1 =
x2

x1(1− x1)
, a2 =

x3

x2(1− x2)
, . . . , at =

x1

xt(1− xt)
. (12)

It is obvious that not for all possible xi ∈ (0, 1) the expression ai ∈ [0, 4] takes
place. However, if it holds then for a given periodic orbit p = (x1, x2, . . . , xt) one
can find the parameter values (a1, a2, . . . , at) for which the perturbed map has such

an orbit. If |β(p)| =
∣∣∣

t∏
i=1

ai(1− 2xi)
∣∣∣ < 1 then it is stable. Therefore, from (12) we

get:

|β(p)| =
∣∣∣∣∣

t∏

i=1

1− 2xi

1− xi

∣∣∣∣∣ < 1 . (13)

Owing to the equality xc = 1/2 we find that (1 − 2xc)/(1 − xc) = 0. Thus, the
expression (13) always holds.

The set of values (x1, x2, . . . , xt), for which there are ai ∈ [0, 4] and inequality
(13) holds, forms a certain region in the coordinate space IRt. Using the system
(12) we can obtain the corresponding region in the parametric space IRt. Let us
consider the case of two–periodic perturbation, τ = 2. In the space (x1, x2) the
region of stable orbits is defined by the following set of inequalities:

0 <
x2

x1(1− x1)
≤ 4, 0 <

x1

x2(1− x2)
≤ 4,

∣∣∣∣
1− 2x1

1− x1

1− 2x2

1− x2

∣∣∣∣ < 1 . (14)

Realization of the first and the second inequalities corresponds to the region of all
orbits of period two. The third inequality cuts from it the existence region of the
stable orbits.

Let us fix the value x1 ∈ (0, 1). Taking into account singularities, we find from
(14):

0 < x2 <
3x1 − 2
5x1 − 3

, 0 < x1 <
1
3

,

0 < x2 <
x1

3x1 − 1
,

1
3

< x1 <
3
5

,

3x1 − 2
5x1 − 3

< x2 <
x1

3x1 − 1
,

3
5

< x1 < 1 .
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Thus, we get the existence region of all possible stable orbits of period two, p =
(x1, x2), for the perturbed map (Fig.3a). To construct a parametric region corre-
sponding to these orbits, it is necessary to transform Fig.3a by means of (12). Let us
divide the region in Fig.3a into subregions which are mapped onto (a1, a2) by a one-
to-one manner. Now it is necessary to transform the boundaries of the subregions.
Thus, we find the existence region of the stable period-two orbits, p = (x1, x2), in
the parametric space (a1, a2) (Fig.3b). To clarify the action of the map (11), the
region in Fig.3a is divided into 4 parts which marked by different shading. The
corresponding regions in Fig.3b have the same structure. Now we can easy analyze
the two–periodically perturbed quadratic family.

Figure 3. The existence region of the period two orbits for the
perturbed (τ = 2) quadratic map in the space (x1, x2) defined
by the curves x2 = 4x1(1 − x1) (a), x1 = 4x2(1 − x2) (b), x2 =
(3x1−2)/(5x1−3) (c), x2 = x1/(3x1−1) (d), and in the parametric
space (a1, a2) given by the curves a2 = 1/a1 (e), a2 = 8/[a1(4−a1)]
(f), a1 = 8/[a2(4− a2)] (g).

1) Obviously, the symmetry of the parameter space is the reason of the symmetry
of the two–dimensional stability diagrams.

2) Because Fig.3b has intersecting subregions, then the map (11) is a single-
valued map but it is not a one-to-one transformation.

3) Intersections mean that the perturbed map is bi-stable. At certain parameter
values it may simultaneously have two stable periodic orbits.

3.1.2. Estimation of admissible noises. Numerical approach allows us to make only
approximate calculations. Therefore, it is necessary to know estimation of the
admissible errors in the parameter values of the perturbed map. This estimation
can be done using the following result.

Theorem 2. [20] Suppose that f(x, a) ∈ C2[M ×A] and at â = (a1, a2, . . . , at) the
perturbed map T has a stable orbit of the period t, p = (x1, x2, . . . , xt). Then , if

|∆ai| ≤ δa = 1
/ (

tSaLSt−1
x

t∑
i=1

Si
x

)
, where i = 1, 2, . . . , t, Sa = max

x,a
|Daf(x, a)|,

L = max
x,a

|D2
xf(x, a)|, Sx = max

x,a
|Dxf(x, a)|, this map has also a stable orbit p′ =

(xc +∆x1, x2 +∆x2, . . . , xt +∆xt) of period t at â′ = (a1 +∆a1, a2 +∆a2, . . . , at +
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∆at) with

|∆xi| ≤ δx =
1

LSt−1
x

.

Proof. Assume that all parameters ai are perturbed, a′i = ai + ∆ai. Let us find
a value ∆x1 = x′1 − xc, where x′1 = F1(x′1, a

′
1, a

′
2, . . . , a

′
t). Then xc + ∆x1 '

F1(xc, a1, a2 . . . , at)+DxF1(xc, â)∆x1+
t∑

i=1

Dai
F1(xc, â)∆ai. Therefore, taking into

account the expressions xc = F1(xc, â) and DxF1(xc, â) = β(p) = 0 we get: ∆x1 =
t∑

i=1

t∏
l=i+1

Dxf(xl, al)Daf(xi, ai)∆ai. Thus,

|∆x1| ≤ δa

t∑

i=1

t∏

l=i+1

∣∣∣Dxf(xl, al

∣∣∣ ·
∣∣∣Daf(xi, ai)

∣∣∣ ≤ δatSa

t∑

i=1

Si
x . (15)

Let us estimate the change in the multiplier of the orbit. We have: β(p′) =
t∑

i=1

D2
xf(xi, ai)

t∏
l=1
l 6=i

Dxf(xl, al)∆xi +
t∑

i=1

D2
axf(xi, ai)

t∏
l=1
l6=i

Dxf(xl, al)∆ai. Obviously,

in both of these sums only the first components are nonzero because Dxf(x1, a1) =

Dxf(xc, a1) = 0. Thus, β(p′) =
[
D2

xf(xc, a1)∆x1+D2
axf(xc, a1)∆a1

] t∏
l=2

Dxf(xl, al).

But D2
axf(xc, a1) = Da

(
Dxf(xc, a)

)∣∣∣
a=a1

= Da(0) = 0. Therefore, the multiplier

of the changed periodic orbit is |β(p′)| = |∆x1|
∣∣∣D2

xf(xc, a1)
∣∣∣

t∏
l=2

∣∣∣Dxf(xl, al)
∣∣∣. For

the stability of this orbit it is necessary that |∆x1|
∣∣∣D2

xf(xc, a1)
∣∣∣

t∏
l=2

∣∣∣Dxf(xl, al)
∣∣∣ ≤

|∆x1|LSt−1
x < 1. Hence, |∆x1| ≤ δx = 1/(LSt−1

x ).
Therefore, if the perturbation ∆x1 is less than the value δx, then the periodic

orbit is stable. However, at parametric perturbations the maximum of ∆x1 is
given by the inequality (15). Thus, finally we get: δatSa

∑t
i=1 Si

x = 1
/ (

LSt−1
x

)
or

δa = 1
/ (

tSaLSt−1
x

t∑
i=1

Si
x

)
.

For the quadratic family of maps at a ∈ [0, 4] and x ∈ [1/4, 3/4] we find: Sa =

max
x,a

∣∣∣∣
∂

∂a
f(x, a)

∣∣∣∣ =
1
4
, Sx = max

x,a

∣∣∣∣
∂

∂x
f(x, a)

∣∣∣∣ = 2, L = max
x,a

∣∣∣∣
∂2

∂x2
f(x, a)

∣∣∣∣ = 8.

This gives a sufficient estimate of the admissible errors in the parameter values:
δa ≤ 1

/(
t2t

∑t
i=1 2i

)
, δx ≤ 1/2t+2.

From the obtained results we may get the following important consequence. If
the induced periodic dynamics in a polymodal family under a periodic perturbation
is observed, then it can not be destroyed by a small enough external noise which
smears the parameter values â. The maximal noise level can be estimated by the
above theorem 2.
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3.2. A piecewise linear family of maps. Consider the following family of maps
of the interval [0, 1] into itself:

Ta : x 7−→ f(x, a) =





q(a)x + r(a) , 0 ≤ x ≤ a,

p(a)(x− 1) , a < x ≤ 1,
(16)

where a ∈ (0, 1) is a control parameter and q(a) = (1 − a)/(a(2 − a)), r(a) =
1/(2− a), p(a) = −1/(1− a). All maps of the family (16) are constructed in such
a way that the critical point xc = a hits in the unstable fixed point r(a) ≡ x̃ after
three iterations (Fig.4). First, let us prove that these maps has a mixing attractor
for an arbitrary a ∈ (0, 1), i.e. they are chaotic.

Figure 4. A piecewise linear map determined by the family (16).

Let T be a map of a set M into itself and Λ ⊂ M be a compact invariant subset
which is different from a periodic orbit. We say (see [28, 29]) that Λ is a mixing set
if for any open set U in Λ and any finite covering Σ = {σj} of the set Λ there exist

m = m(U, Σ) and r ≥ 1 depending only on Λ such that Tm

(
r−1⋃
i=0

T iU

) ⋂
σj 6= ∅ for

all j. If, in addition, the set Λ attracts almost all trajectories from a neighborhood
V , i.e. there exists V ⊃ Λ such that V 6= Λ, TV ⊂ V and

⋂
i>0

T iV = Λ, then the

set Λ is said to be a mixing attractor.
The existence of the mixing attractor in maps of an interval into itself is a suf-

ficiently strong property. For example, a map with the mixing attractor does not
have stable periodic orbits, and it possesses sensitive dependence on initial condi-
tions. Moreover, for such maps it is possible to construct absolutely continuous
invariant measure. Thus, maps with the mixing attractor can be called chaotic.
Moreover, the following result holds [28]: if T : x 7→ f(x), x ∈ I, and f ∈ C0(I, I)
where I is an interval, then the mixing attractor consists of one or several intervals
which are cyclically mapped into each other, and periodic points are dense on it.

Now we may get the chaoticity conditions in the family (17).

Theorem 3. For any a ∈ (0, 1) the map Ta (16) has the mixing attractor Λ = [0, 1].
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Proof. We make it by two stages.
1) To show that Λ = [0, 1] is an attractor for Ta, it is sufficient to consider the

map (16) in any extended interval, for example, in [−1/2, 3/2] (Fig.5). One can
see that for any a ∈ (0, 1) there exists a neighborhood V of the set Λ such that
fV ⊂ V and f2V = Λ. Thus, Λ is the attractor on the interval [0, 1].

Figure 5. An extended piecewise linear map (16).

2) To prove that the attractor Λ = [0, 1] is a mixing, note that it consists of
two subintervals, J1 and J2, which are mapped into each other under the action of
Ta, Λ = J1

⋃
J2, TaJ1 = J2, TaJ2 = J1, where J1 = [0, x̃], J2 = [x̃, 1] (Fig.6). The

rest of proof uses the following result.

Figure 6. The intervals J1, J2 composed the attractor Λ = [0, 1]
for the map (16).

Lemma 1. For any open set U ⊂ Λ there exists a number n such that
i) Tn

a U = Λ or
ii) Tn

a U = Ji, where i = 1, 2.
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Proof. Consider the map T 2
a = Ta ◦ Ta (Fig.7). Because T 2

a J1 = J1 and T 2
a J2 =

J2, then T 2
a is decomposed into two maps, TJ1 and TJ2 , operating on J1 and J2,

respectively. Moreover, owing to p2 = p(a)p(a) > 1, |p(a)q(a)| = 1/(a(2 − a)) >
1, a ∈ (0, 1), the maps TJ1 , TJ2 are expanding ones. Therefore, for any open set
U ⊂ J1 (U ⊂ J2) there exists a number m such that T 2m

a U = J1 (T 2m
a U = J2). In

other words, for n = 2m we have the condition ii). Now it is necessary to consider
the sets U 3 x̃. For such sets (Fig.7) there exists m : T 2m

a U = Λ.

Figure 7. The second iteration, T 2
a , of the map Ta (16).

Thus, to prove theorem 3 it is necessary, for any open set U ⊂ Λ, to choose r = 2
and m from the above lemma. In this case Tm

a (TaU
⋃

U) = Λ because, if U ⊂ J1

then TaU ⊂ J2, and if Tm
a U = J1 then Tm

a (TaU) = J2. By the same manner we
obtain the result for U ⊂ J2 and U 3 x̃.

It is not hard to understand the structure of periodic orbits of the family (16).
Because T 2

a is decomposed into two independent maps, TJ1 and TJ2 which operate
in the subintervals J1 and J2 respectively, it makes it possible to construct maps
having orbits of an arbitrary even period, T 2k

a . These orbits are dense in Λ = [0, 1].
For this it is sufficient to find T k

J1
and T k

J2
.

A completely different situation takes place for odd iterations of Ta. Really,
T 2k+1

a = Ta ◦ T 2k
a . Therefore, except for a fixed point, Ta does not have orbits of

odd periods. Thus, the family (16) has the mixing attractor with dense periodic
orbits of even periods.

Now let us consider the perturbed family (16). Restrict ourselves by the case of
a 2-periodic transformation of the parameter a:




T1 : x 7−→ F1(x) ≡ Ta2 ◦ Ta1 ,

T2 : x 7−→ F2(x) ≡ Ta1 ◦ Ta2 .
(17)

Without loss of generality suppose that 0 < a1 < a2 < 1. Introduce the following
notations: a1 = a, a2 = a + ε, ε > 0 (Fig.8). Thus, the map T1 has three fixed
points which exist for any a1, a2 ∈ (0, 1). These fixed points correspond to three
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different 2-periodic orbits of the perturbed map (17). The orbit corresponding to
the middle fixed point (Fig.8) arises from the fixed point of the unperturbed map
(17). Two orbits of period 2 corresponding to two other fixed points arise from an
orbit of period 2 (Fig.7).

Figure 8. Construction of the map T1 (17).

Let us show that it is possible to find such parameter values that the latter fixed
points become stable. We have: |q1p2| = (1 − a)/(a(2 − a)(1 − a − ε)) ≡ s1(ε),
|q2p1| = (1 − a − ε)/

(
(a + ε)(2 − a − ε)(1 − ε)

) ≡ s2(ε). Consider the functions
s1(ε), s2(ε) in the region 0 < ε < 1−a (Fig.9). Thus, we find that for any a ∈ (0, 1)
there is a range of the values ε ∈ (ε∗, 1− a) where s2(ε) < 1. In other words, in the
interval (ε∗, 1 − a) the perturbed map (17) has the stabilized periodic orbit arisen
from the unstable orbit of the unperturbed map (16) (see Figs.7,8), and almost all
phase points from the interval [0, 1] are attracted to it. This orbit becomes stable
by means of continuous change in the parameters (a1, a1) of the map (17) to the
values (a1, a2) such that s2(a1, a2) < 1 (see Fig.9).

In view of the this obtained result the following question arises: Is it possible to
stabilize a prescribed unstable orbit in the chaotic map (16) via the feedback–free
perturbation (2)?

Our preliminary considerations show that this problem requires detailed analysis
of the map (16) and application of specified perturbations.

3.3. Two–dimensional map with a hyperbolic attractor. External pertur-
bations can crucially affect on dynamics of certain maps if their dimension is more
than one. As an example of such a map let us consider so-called Belykh map which
appears in the physical systems of phase synchronization [30].
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Figure 9. The functions s1(ε), s2(ε) for a = 1/2.

Let Q = {(x, y) : |x| < 1, |y| < 1} be a square in the plane (x, y). Then the
Belykh map is given by the following construction [31]:

T : (x, y) 7−→ f(x, y), (18)

where

f(x, y) =





(
λ1(x + 1)− 1,

1
λ2

(y + 1)− 1
)

, (x, y) ∈ Q1,(
λ3(x− 1) + 1,

1
λ4

(y − 1) + 1
)

, (x, y) ∈ Q2,
(19)

and the regions Q1, Q2 are presented as the separation of the function h(x) :
[−1, 1] → [−1, 1] into two parts:

Q1 =
{

(x, y) ∈ Q : y < h(x)
}

,

Q2 =
{

(x, y) ∈ Q : y > h(x)
}

. (20)

In addition, the constants λ1, λ2, λ3, λ4 and the function h(x) should be chosen in
such a way that the square Q is mapped into itself, TQ ⊂ Q (Fig.10).

We consider the case h(x) = ax, λ1 = λ3, 1/λ2 = 1/λ4 ≡ λ2, i.e.

T : (x, y) 7−→ f(x, y) =





(
λ1(x + 1)− 1, λ2(y + 1)− 1

)
, y < ax,(

λ1(x− 1) + 1, λ2(y − 1) + 1
)

, y > ax,
(21)

|a| < 1 (Fig.11). The Belykh map is remarkable for the fact that it has a hyperbolic
attractor for certain parameter values.

As is known (see, e.g., [29, 32]), an invariant set Λ for a diffeomorphism f : Q → Q
of a compact manifold Q is said to be hyperbolic attractor if Λ is an attractor and
simultaneously hyperbolic set (a rigorous definition can be found in [32]). Let
us clarify the sense of the notion of the hyperbolic attractor. If the set Λ is an
attractor then there is an open neighborhood which shrinks to Λ with iterations.
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Figure 10. Construction of the Belykh map (18)-(20).

Figure 11. A special case (21) of the Belykh map (18)–(20).

For maps, the property of hyperbolicity means that in any point p of Λ there
are two invariant directions. Along one of them the points of the manifold Q
exponentially tend to the initial point p at t → ∞, and along the other direction
the points tend to p at t → −∞. In turn, the existence of stable and unstable
manifolds implies that maps with hyperbolic attractors have sensitive dependence on
initial conditions. Moreover, such maps possess invariant measures which determine
statistical properties of typical trajectories.

We consider the Belykh map (21) which is however not hyperbolic in a rigorous
sense, because it has discontinuities. But this map is typified by hyperbolic dynam-
ical systems with singularities. Such maps appear in many physical problems. With
the proviso that a set of discontinuities has a zero measure and the other additional
conditions [33], one can obtain the rigorous results concerning discontinuous hyper-
bolic dynamical systems. In particular, for every regular point it is possible to form
the local stable and unstable manifolds. Moreover, based on the concrete type of
points of discontinuity one can construct an ergodic invariant measure.

It is not difficult to find conditions at which there exists the hyperbolic attractor
in the Belykh map. First, let us note that for |a| < 1 the map (21) has two
fixed points X = (1, 1) and Y = (−1,−1). Second, for all points of the square
where the map (21) is determined, the derivative is Df = diag{λ1, λ2}. For the
property of hyperbolicity it is necessary that |λ1| < 1, |λ2| > 1 or vice versa,
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and TQ ⊂ Q. It is not hard to verify that the latter condition is satisfied only
if 0 < λ1 < 1, 0 < λ2 < 2/(1 + |a|), |a| < 1. Finally, the transformation T
should be a one-to-one map. Geometrically, we may come to the conclusion that
the map (21) is a homeomorphism only in the parameter range 0 < λ1 < 1/2.
Thus, for a hyperbolicity we get the following inequalities: 1) 0 < λ1 < 1/2; 2)
1 < λ2 < 2/(1 + |a|); and 3) |a| < 1.

Figure 12. The generalized Belykh map (22).

Let us generalize the Belykh map (21) into the case of |a| > 1. To this end one
should note that for |a| > 1 the point X falls in the range y < ax, and the point Y
falls in the region y > ax (Fig.12). Therefore, to determine for |a| > 1 the existence
conditions of these fixed points it is necessary to rewrite the map (21) in the form:

T : (x, y) 7−→ f(x, y) =





(λ1(x + 1)− 1, λ2(y + 1)− 1), y > ax,

(λ1(x− 1) + 1, λ2(y − 1) + 1), y < ax.
(22)

Thus, we can obtain the map (22) from the map (21) by the substitution x ↔ y and
a → 1/a. Consequently, we get that the hyperbolicity condition for the map (22) is
the validity of the following inequalities 0 < λ2 < 1/2 and 1 < λ1 < 2/(1 + 1/|a|).
It should be however noted that in contrast to the map (21), in this case |λ2| < 1
and |λ1| > 1.

Let us consider a construction of the Belykh map for the case of a two–periodically
perturbed parameter a. To find qualitative changes in its dynamics it is necessary
to switch the parameter a near a = 1 in such a way that a1 < 1, a2 > 1. In order
that for both these cases the perturbed map would be hyperbolic it is necessary to
vary also the parameter λ1, λ2. Taking into account these conditions, we may write
the perturbed Belykh map as follows:

T̄ =





(x, y) 7−→ f(a2, λ
2
1, λ

2
2) ◦ f(a1, λ

1
1, λ

1
2)(x, y)

(x, y) 7−→ f(a1, λ
1
1, λ

1
2) ◦ f(a2, λ

2
1, λ

2
2)(x, y)

(23)

for even and odd iterations, respectively.
Because both maps (with a1 < 1 and a2 > 1) have the fixed points X = (1, 1) and

Y = (−1,−1), then these points remain to be the fixed ones also for the perturbed
map (23). Moreover, the differential DT̄ of the perturbed map (for odd and even
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iterations) is:

DT̄ =
(

λ2
1 0
0 λ2

2

)
·
(

λ1
1 0
0 λ1

2

)

=
(

λ2
1λ

1
1 0

0 λ2
2λ

1
2

)
def
=

(
λ∗1 0
0 λ∗2

)
.

Therefore, in view of the fact that for a1 < 1 we have 0 < λ1
1 < 1/2, 1 < λ1

2 <
2/(1 + |a1|), and 1 < λ2

1 < 1/(1 + 1/|a2|), 0 < λ2
2 < 1/2 for a2 > 1, the eigenvalues

λ∗1 and λ∗2 of DT̄ are changed in the following range: 0 < λ∗1 < 1/(1 + 1/|a2|),
0 < λ∗2 < 1/(1 + |a1|). In other words, we find that |λ∗1| < 1, |λ∗2| < 1 and the fixed
points X, Y of the map become stable. This means that the hyperbolic attractor
is degenerated and replaced with a simple attractor.

Thus, introducing periodic perturbations of the map with the hyperbolic attrac-
tor we get a qualitative change in the dynamics: From a chaotic map it transforms
into a regular one with the stable fixed points.

4. Conclusion. Thus, we have shown that external periodic perturbations can
crucially effect on the behavior of the quadratic map, a piecewise linear family and
a map with the hyperbolic attractor. Moreover, as shown in Section 3.1, for maps
having critical points the chosen in advance periodic orbits can be stabilized. Hence,
for dynamical systems the behavior of which is effectively described by polymodal
one–dimensional maps, the non–feedback control is possible. Therefore, in general,
the obtained results allows us to put a question concerning a rigorous validation of
the existence of a feedback–free parametric excitation needed for the stabilization
of the prescribed periodic orbits embedded in a chaotic attractor.

In addition, the developed technique allows, in principle, to find analytically a
way for the chaos suppression phenomenon for chaotic maps with external pertur-
bations. This fact can essentially simplify investigations of the maps under periodic
perturbations.

Thus, the described results permit us to find an analytic approach to the prob-
lem of the chaos suppression for dynamical systems with continuous time (i.e. for
flows). Let us suppose that a system possesses a chaotic attractor. Then, if we
appropriately choose external periodic perturbations then one can expect that they
lead to appearance of stable periodic orbits. These orbits either have not existed
in the initial (unperturbed) system or they have not been stable ones. Some inves-
tigations justify this conjecture (see [2] and references therein). However the main
problem is to show the presence of an appropriate chaotic attractor in the system.
At the same time, some results concerning the induced stable periodic behavior
in continuous non–chaotic dynamical systems possessing only steady state and/or
unstable cycles have been described [2].

On the other hand, great successes of the chaos suppression phenomena in appli-
cations led to the opinion that chaos can always be suppressed by external pertur-
bations. However this is not the case. It has been found that periodic perturbations
of certain parameters can not lead to the suppression of chaos. As a consequence,
for an arbitrary system we do not know in advance, what parameter is appropri-
ate for the stabilization of the system dynamics [34]. In this connection, it would
be useful to have a basic criterion which allows us to determine in what cases the
chaotic motion can be stabilized. This important question will arise every time in
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practice. But unfortunately, up to the present there is no even general analytical
criteria of the existence of chaos in simple dynamical systems.
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