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The problem of chaos suppression by parametric perturbations is considered. Despite the wide-
spread opinion that chaotic behavior may be stabilized by perturbations of any system parameter,
we construct a counterexample showing that this is not necessarily the case. In general, chaos
suppression means that parametric perturbations should be applied within a set of parameters at
which the system has a positive maximal Lyapunov exponent. Analyzing the known Duffing-
Holmes model by a Melnikov method, we showed that chaotic dynamics cannot be suppressed by
harmonic perturbations of a certain parameter, independently from the other parameter values.
Thus, to stabilize the behavior of chaotic systems, the perturbation and parameters should be
carefully chosen. © 2006 American Institute of Physics. �DOI: 10.1063/1.2195787�
reat success and profit of the chaos suppression phe-
omenon in applications led to the widespread opinion
hat chaotic oscillations may always be stabilized by
arametric perturbations. Nevertheless, in what cases
an the chaos be suppressed in such a manner? In gen-
ral, this question means that we should perturb the sys-
em within a region of parameter values where chaotic
ehavior occurs. The chaoticity region may be deter-
ined as a set of parameters for which the separatrices

re split. In this case, the maximal Lyapunov exponent is
lways positive. Thus, the chaos suppression implies that
ll perturbed parameters should not fall outside the lim-
ts of this region. In the present paper, by a Duffing-
olmes system we construct an analytic example when
arametric perturbations cannot lead to the suppression
f chaos if they belong to the chaoticity region. One can
xpect that the same results may be observed in the other
hysical systems. Our analysis is based on the Melnikov
ethod, which gives us a criterion for the observation of

haos. The obtained results are in excellent agreement
ith numerical simulations.

. INTRODUCTION

As is known, chaotic oscillations are inherent in many
atural processes. But the development of chaos is some-
imes not desirable, and thus it is necessary to create condi-
ions under which originally chaotic systems acquire regular
ynamics. In this connection, in the past 15 years, problems
elated to suppressing and controlling chaos have attracted
uch attention. Stabilization of chaotic oscillations may be

ealized in two ways. The first does not take into account the
urrent value of the dynamical variables of the system,
hereas the qualitatively different second method involves

eedback as a necessary component of the system. By the
stablished convention, the first method is called suppression
f chaos and the second one is called �feedback� controlling

haos.
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Using the feedback we have a certain advantage, be-
cause in most cases feedback control produces the required
result: a prescribed saddle limit cycle is stabilized and the
system thus attains the necessary motion. On the other hand,
stabilization methods without feedback do not require con-
tinuous tracking of the system state and are more robust to
noise.

The idea that chaos may be suppressed goes back to
Refs. 1 and 2, where it was proposed to perturb periodically
the system parameters. Later, this approach gained analytical
substantiation in a series of publications3–9 �as a review, see
Ref. 10�. At the same time, it has been found that chaotic
systems can be controlled.11–13

We will focus on chaos suppression. This phenomenon
means the following. Let us suppose that for required values
of parameters, the chaotic dynamics is not acceptable. Then,
to realize periodic behavior and suppress chaos, it is suffi-
cient to apply a weak parametric perturbation that does not
fall outside the set of parameter values for which the system
exhibits chaotic properties, e.g., one that has a positive
Lyapunov exponent. Great successes of chaos suppression
phenomena in applications led to the opinion that chaos can
always be suppressed by such perturbations. However, this is
not the case. Using a Duffing oscillator, we analytically con-
struct a counterexample in which periodic perturbations can-
not lead to the suppression of chaos. As a consequence,
for an arbitrary system we do not know in advance what
parameter is appropriate for the stabilization of the system
dynamics.

The Duffing system is known as one of the simplest
nonlinear dissipative models with a wide range of complex
behavior. It is used for the description of many real pro-
cesses, such as mechanical and radio physical oscillations
�see, e.g., Refs. 14 and 15 and references therein�, plasma
dynamics �see Ref. 16�, and others. The properties of the
Duffing system have been widely analyzed. In particular, us-

14,17,18
ing the Melnikov method, which is based on the analy-
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Dow
is of the homoclinical structure of stable and unstable mani-
olds of a hyperbolic point, it has been shown that at certain
arameter values this equation has chaotic dynamics.14,21

Modifications of the Duffing oscillator have also at-
racted a considerable amount of interest as an appropriate
odel for the investigation of the chaos suppression phe-

omenon �see Refs. 3, 8, 19, and 20 and references cited
herein�. One of the modified Duffing equations is known as
he Duffing-Holmes system:

ẍ + �ẋ − x + ��1 + � cos �t�x3 = � cos �t . �1�

In the present paper, by means of the Melnikov method
e show that periodic perturbations of the parameter � do
ot lead to a stabilization of the chaotic behavior of the sys-
em �1� if these perturbations belong to the chaotic region. In
he case of the nonlinear oscillatory circuit, perturbations of

may be realized by temporal variations of the inductance.

. The Melnikov method

It is well known that in Hamiltonian systems, separa-
rices can split. In this case, stable and unstable manifolds of

hyperbolic point do not coincide, but intersect with each
ther in an infinite number of homoclinical points. �Usually
he motion in the �n+1�-dimensional phase space
x1 , ... ,xn , t� is considered in the projection onto an
-dimensional hypersurface t=const �Poincaré section�.� The
resence of such points gives us a criterion for the observa-
ion of chaos. This criterion can conveniently be obtained by
he Melnikov function �MF�, which “measures” �in the first
rder of a small perturbation parameter� the distance between
table and unstable manifolds. Let us consider a two-
imensional autonomous system under the action of a peri-
dic perturbation,

ẋ = f0�x� + �f1�x,t� . �2�

et furthermore x0 be the separatrix of the unperturbed sys-
em ẋ= f0�x�. Then the MF at any given time t0 is defined as
ollows:

D�t0� = � − �
−�

+�

f0 Ù f1�
x=x0�t−t0�

dt , �3�

here the integral is taken along the unperturbed separatrix

0�t− t0� and the integrand is f0Ù f1= f0xf1y − f0yf1x.
In general, in dissipative systems one can observe three

ossibilities for the MF: either D�t0�	0 �Fig. 1�b��, D�t0�
0 �Fig. 1�c�� for any t0, or D�t0� changes its sign for some

0 �Fig. 1�d��. Only in the last case does chaotic dynamics
rise. Thus, the MF determines the character of the motion
ear the separatrix. Note that the Melnikov method has a
erturbative character, thus its application is allowed only for
rajectories that are sufficiently close to the unperturbed
eparatrix. Moreover, this method is adaptive only for sys-

ems with ��1.
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II. CHAOTIC REGIONS IN THE DUFFING-HOLMES
SYSTEM

Let us consider the Duffing-Holmes equation in the fol-
lowing form:

ẋ = y , ẏ = x − ��1 + � cos �t�x3 − �y + � cos �t . �4�

Following Eq. �2�, f0= �y ,x−�x3� and f1= (0,� cos �t
−�� cos��t�x3−�y). If parameters �, �, and � are small
enough, we can apply the Melnikov method. The MF given
by �3� yields

D�t0� = − �
−�

+�

�� cos �t − �� cos��t�x0
3�t − t0�

− �y0�t − t0��y0�t − t0�dt . �5�

The explicit expressions for the unperturbed separatrix
(x0�t� ,y0�t�) are determined by the equation H0(x0�t� ,y0�t�)
=0, where H0�x ,y�= 1

2 y2− 1
2x2+� /4x4 is the Hamiltonian of

the unperturbed system. Thus, we obtain x0�t�=� / cosh t and
y0�t�=−� sinh t / cosh2 t as a parametrization of the separa-
trix, where �=�2/�. Finally, the MF is22

D�t0� = − A sin �t0 + B sin �t0 + C �6�

with the constants

A = 
��� sech�
�/2� ,

B = �1/24�
���4�2�4 + �2�csch�
�/2� ,

C = �2/3��2� .

Let us now introduce the subset �c of the parameter
range � such that if ���c, then the system �4� exhibits cha-
otic properties. To find this chaotic region, we have to exam-
ine under which values of � the MF changes its sign. For the
case �=�, the analysis gives an explicit expression for �c,

� 	 �cr �
3

2 	B − A	 . �7�

FIG. 1. Poincaré section t=const �mod T� of the system �2� for �=0 �a� and
��0 �b�–�d�.
2�
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If ���, it has to be considered whether the frequencies
and � are commensurable. When they are incommensu-

able, i.e., � /� is irrational, we immediately have

� 	 �cr �
3

2�2 �A + B� . �8�

f � /�=m /n, where m and n are integers, we can find a
eneral expression for �cr so that each case of m /n should be
nalyzed separately. It is clear, however, that commensura-
ility of the frequencies lies between the cases “�=�” and
m /n is irrational.” Therefore, from �7� and �8� we get the
ritical value of �cr,

3

2�2 	A − B	 	 �cr 	
3

2�2 �A + B� . �9�

or each �cr the region of chaos is then given by �c

�0,�cr�.
We emphasize that �c defines the value set � for which

omoclinic points exist. This is only a local criterion of the
evelopment of chaos in a small enough neighborhood of the
nperturbed separatrix.

. Numerical analysis

We numerically analyzed the Duffing-Holmes equation
or the following fixed parameters: �=8, �=0.114, �=0.03,
=�=1.1, and � is free. For these values, the expression �7�

ives immediately �cr=0.3798. As a criterion of the chaotic-
ty, we calculated the maximal Lyapunov exponent as a func-
ion of �.23

A typical dependence of the maximal Lyapunov expo-
ent on the parameter � is shown in Fig. 2. Positive values
ark clearly the region of chaos, �c= �0.137,0.378�. The

ame result takes place for any initial conditions chosen in a
mall separatrix neighborhood. The right boundary value of
his region is in excellent agreement with �cr found analyti-
ally. On the contrary, the left boundary value of �c cannot

IG. 2. The maximal Lyapunov exponent. The parameter values are the
ollowing: �=�=1.1, �=0.114, �=0.03, �=8. Initial conditions: x0=0,

0=0.
e obtained by the Melnikov method.

nloaded 31 May 2006 to 212.192.236.176. Redistribution subject to AI
III. TEMPORAL VARIATION OF THE PARAMETER �

Having specified �c, let us introduce a parametric per-
turbation of �. We will show that for reasonable amplitudes
of perturbation, the chaotic motion of the system �4� cannot
be transformed into the regular oscillations. To be more pre-
cise, we consider the following equation:

ẋ = y ,

�10�
ẏ = x − ��1 + � cos �t�x3 − ��0 + �1f�t��y + � cos �t ,

where we made the replacement �→��t�=�0+�1f�t� with a
normalized periodical function f�t�= f�t+T� and amplitude
�1. Let us further assume that perturbations should remain
within the chaotic region, i.e., �0��c= �0,�cr�, �0+ 	�1	
	�cr, and �0− 	�1	
0. Below we will show that in this case
the system �10� does not possess regular dynamics.

We will use the Melnikov method, which gives condi-
tions for the appearance of homoclinic points �and thus the
chaos�. Therefore, we will demand the absence of ho-
moclinic points as a condition that the chaos is suppressed.
The following numerical analysis will fortify our proceed-
ings.

Let us assume that there exists a function f�t� and an
amplitude �1 such that it stabilizes our system �10�. Then
D�t0� does not change its sign. We will show that this as-
sumption cannot hold together with the requirement that the
perturbation lies inside the chaotic region, i.e., ��t���c for
all t.

A. Harmonic perturbation

In comparison with the analysis described in Sec. II,
now � has an additional term, �1f�t�. Hence, we have to add
to D a new part D1�t0�: D�t0�=D0�t0�+D1�t0�. Here D0 is the
already known MF, D0�t0�=−A sin �t0+B sin �t0+C2��0�,
and D1 is determined by the additional part �1f�t�:

D1�t0� = �
−�

+�

�1f�t�y0
2�t − t0�dt . �11�

Because �0��c, we know that D0�t0� changes its sign.
On the other hand, to eliminate chaos we should demand that
D�t0� does not change its sign. Let us therefore consider the
case that the sum D0�t0�+D1�t0� has a non-negative value for
all times t0, i.e.,

D1�t0� � − D0�t0� . �12�

In order to obtain D1, we will analyze f�t� in the form of
a harmonic function f�t�=sin��t+��. Then from �11� we
have

D1�t0� = �1�2�� sin��t0 + �� �13�

with the constant ��=
 /6��2−�2�csch�
� /2�sech�
� /2�.
Thus, the expression �12� can now be rewritten as

2
�1� �� sin��t0 + �� � A sin �t0 − B sin �t0 − C2. �14�

P license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Let us assume for a moment that B=0. This simplifies
he last inequality containing three frequencies to an inequal-
ty with two frequencies. In this case, we can use the follow-
ng suppression theorem:7

. To satisfy inequality �14�, it is necessary that �= p�,
where p is an integer �resonance condition�.

. If additionally p= �4m+1−2� /
� / �4n+1� for some in-
tegers m and n, then �14� is satisfied only when

�min 	 �1 � �max, �min = 
1 −
C2

A
�R ,

�15�

�max =
R

p2 ,

with R=3�2�� / p�2− p2�2�sinh�
p� /2� / cosh�
� /2�.
�This holds only for p�	�2; at p�
�2 one has to
change the roles of �min and �max.�

his means that the value set �1 leading to the chaos sup-
ression crucially depends on the order of the resonance p.
ow, it is necessary to estimate to what extent we can use

he resonant perturbations of different order. To clarify this,
et us consider what consequences are implied by the re-
uirement �min	�max. Easy transformations result in

�0 
 
1 −
1

p2��cr. �16�

ecause �0	�cr, for higher harmonics �p
1� this inequality
hrinks drastically the region of perturbations. It is evident
hat it remains valid if in �14� we take B�0. That is why we
onfine ourselves by the first-order resonance p=1. In other
ords, following the suppression theorem,7 it is necessary to
se perturbation of the form sin�p�+��. On the other hand
in agreement with the Melnikov approach�, if p
1 we can
pply such a perturbation only in a very small region on the
dge of the chaotic region, i.e., only when �0��cr. There-
ore, for an arbitrary �0 in the region of chaos �0,�cr� we
ave to take p=1. Then inequality �16� gives 0	�0	�cr,
hich yields the whole chaos region �c.

The optimal value of the initial phase � for suppressing
haos is �=0. This has to be understood in the sense that this
alue allows the smallest amplitudes of the chaos-
uppressing perturbation. Thus, together with the resonance
ondition ��=�=��, from �14� we get

�C1 + �1�2��sin �t0 + C2 � 0, �17�

here C1=B−A, C2=2�2�0 /3, 	�=��	�=�. One can show
hat this inequality is equivalent to the following:

��1 +
C1

�2�
� �

2

3	�	
�0. �18�

hen the solution set for �1 turns out to be directly visible. In
ig. 3 the set S1 of pairs ��0 ,�1� for which the chaotic motion
anishes �i.e., D�t0� does not change its sign� is shown.

However, we consider perturbations of � that should re-
ain within the chaotic region �0,�cr�. Therefore, �0+ 	�1	

2
�cr=3/2� 	C1	 or

nloaded 31 May 2006 to 212.192.236.176. Redistribution subject to AI
	�1	 	
3

2�2 	C1	 − �0. �19�

Thus, this inequality induces a set S2 of “allowed” pairs
��0 ,�1�.

The set S2 is also shown in Fig. 3. From this figure we
can clearly see that the regions S1 and S2 are not intersecting
with each other. This means that there are no pairs ��0 ,�1� of
perturbations within the region �c, satisfying the stabilizing
condition.

Let us therefore show that for any ��0
* ,�1

�1���S1 and
��0

* ,�1
�2���S2 we have 	�1

�1�	
 	�1
�2�	. To make this, it is suffi-

cient to show that at �0
*=0 the maximal possible value of

	�1
�2�	 is less than 	�1

�1�	 and that at �0
*=�c the minimal possible

value of 	�1
�1�	 �as well as 	�1

�1�	� is equal to zero.
At �0

*=0 �see �19�� we get 	�1
�2�	=3/2�2	C1	. On the other

hand, from �18�, 	�1
�1�	
3/2�2	C1	= 	�1

�2�	 because

max
�
0

�� 	
2
3 . �20�

This last fact is obtained from the analysis ��=
 /6��2
−�2�csch�
� /2�sech�
� /2�. Thus, the maximal value is
2 /3 at �=0.

Consider now some 	�1
�1�	�S1 and 	�1

�2�	�S2 at �0
*=�cr

=3/2�2	C1	. It is obvious that �1
�2�=0. According to inequal-

ity �18� at �0
*=�cr the boundaries of S1 are determined as

follows:

��1
�1� +

C1

�2�
� =

2

3	�	
�cr = � C1

�2�
� .

Therefore, the minimal value of 	�1
�1�	 is also equal to zero.

Thus, Fig. 3 correctly illustrates the relation of S1 and S2,
i.e., S1�S2=�.

It should be noted that in order to find the regular dy-
namics, we have analyzed the inequality D�t0��0 for all t0.

FIG. 3. The set S1, where we have the stabilizing of chaotic dynamics, and
the set S2 of pairs ��0 ,�1�, satisfying the condition �0+ 	�1		�cr. One can see
that these regions are disjoint.
Following to the Melnikov method, however, it is sufficient

P license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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hat D�t0� does not change its sign, which obviously also
ncludes the case D�t0��0 for all times t0. Then the relation
17� may be changed by �C1+�1�2��sin �t0+C2�0. But,
ecause C2 is a positive value, this inequality cannot be car-
ied out.

Thus, we come to the conclusion that in the Duffing-
olmes system the suppression of chaos cannot be achieved
y a harmonic perturbation of the parameter � within the
egion �c.

. Numerical analysis

To analyze the perturbed system numerically, we com-
uted the maximal Lyapunov exponent for different pairs
�0 ,�1�. For convenience, we have to norm �1 to �1 /�0. The
esult of 250�250 calculations of ��0 ,�1 /�0�, �0��c, is
hown in Fig. 4.

One can see that our theoretical predictions are in fine
greement with the numerical analysis. In the region S2 �the
olid line� we have everywhere a positive value of the
yapunov exponent. Therefore, here the perturbations are not
tabilizing for the system. In the region S1 �the dashed line�,
hich was obtained by the Melnikov method, we clearly see

he stabilization phenomenon.

. Perturbations with frequencies �Å�

In the previous section a parametric perturbation with
nly one frequency was analyzed. As a consequence, to
liminate homoclinic points we had to put �=�. Let us now
uppose that ���. �The subharmonic resonances are not
onsidered for the same reason as in Sec. III A: If we al-
owed higher-order resonances, the chaos suppression would
ot be possible in almost the whole region of chaos of the
arameter �0. Only in a very small region near �cr could one
atisfy the suppression theorem. This does not yet mean that
here exist chaos suppression perturbations that are strictly in
he region of chaos.� In this case, it is necessary to vary f�t�,

IG. 4. The maximal Lyapunov exponent for the system �10�. Each negative
alue is marked with a black dot. The solid line marks the upper boundary
f S2. The dashed line represents the boundary of S1 obtained by the Melni-
ov method. The parameter values are the following: �=�=1.1, �=0.114,
=0.03, �=8. Initial conditions: x0=0, y0=0.
hich induces �see the previous section� an additional

nloaded 31 May 2006 to 212.192.236.176. Redistribution subject to AI
summand D1�t0� in the MF. We will require again that by this
part the Melnikov function D�t0� does not change its sign. In
particular, analogously to �12�,

D1�t0� � − D0�t0� = A sin �t0 − B sin �t0 − C2 �21�

for all t0, where D0�t0� changes sign in the analyzed chaotic
region. If we arrange f�t� as a sum of harmonic functions
with different frequencies, then, according to �13�, we obtain
that the left-hand side of the last inequality can also be rep-
resented by a sum of harmonic functions with the same fre-
quencies.

According to the suppression theorem �see Sec. III A�,
inequality �21� can be satisfied if both sides consist of the
same frequencies considered as before only in the first-order
resonance. That is why we should take the perturbation as
follows:

f�t� = a1 sin �t + a2 sin �t , �22�

where a1 and a2 are coefficients satisfying the relation

	a1	 + 	a2	 = 1. �23�

Thus, the correcting term in the MF is D1�t0�
=�1�2�a1�� sin �t0+a2�� sin �t0�. Therefore, inequality
�21� yields

��1�2a1�� − A�sin �t0 + ��1�2a2�� + B�sin �t0 + C2 � 0.

�24�

The chaos suppression phenomenon is equivalent to the sat-
isfaction of this inequality for some a1, a2, and �1
0. Be-
cause the factors before sin should be as small as possible
�we remind the reader that C2
0�, without loss of generality
we can require that a1��
0 and a2��	0.

Furthermore, according to our strategy, perturbations
should belong entirely to �c. This region can be exactly
specified in the particular cases “�=�” and “� /� is irratio-
nal” �see �7� and �8��. Hence, for perturbations with two
�different� frequencies, the inequality �24� may be considered
when � and � are incommensurable. Below we will focus
on this case.

First of all, note that the inequality �24� is equivalent to
the following:

min
t0�R

���1�2a1�� − A�sin �t0 + ��1�2a2�� + B�sin �t0�

+ C2 � 0.

Owing to the incommensurability of � and �, we can evalu-
ate separately the minimal value of every summand. Thus,
from �24� we have

	�2a1���1 − A	 + 	�2	a2��	�1 − B	 � C2. �25�

This inequality can be easily analyzed geometrically �Fig. 5�.
In this figure, both summands of inequality �25� are

shown by thin lines, and the total sum on the left-hand side is
shown by the bold line. Considering the right-hand side,
C2��0, we can find the set S1 of inequality �25�. Because
this inequality is symmetrical with respect to both sum-
mands, without loss of generality we can assume that the
zero of the second summand lies to the left of the zero of the

2 2
first summand: B / �� 	a2��	�	A / �� a1���.
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Now let us define S2 as the set of pairs ��0 ,�1� for which
he perturbation remains within the chaotic region �c: �0

	�1	��cr. Then we can show that S1 and S2 are not inter-
ecting with each other, which means that perturbations in-
ide �c cannot be found.

Consider the values C�1� and C�2�, which are the y coor-
inate of the points P1 and P2, respectively �see Fig. 5�. To
nd that S1�S2 is the empty set, it is sufficient to obtain that
�1�
C�2�, and both the upper bound of S2 and the bold line

i.e., the left-hand side of inequality �25�� meet at the point

1=0. The last condition is obvious. Thus, we should show
hat C�1�
C�2�.

The explicit forms of C�1� and C�2� are

C�1� = ��2a1��

− B

�2a2��

− A� = � a1��

a2��

B + A� ,

C�2� =
2

3
�2�0 =

2

3
�2��cr − �1� = A + B +

2

3

B

a2��

.

hus, it is necessary for the inequality

A + B +
2

3

B

a2��

	 � a1��

a2��

B + A� �26�

o be satisfied. First, consider the case when the expression
nder the module sign is not negative. Then inequality �26�
an be rewritten as −	a1��	− 	a2��	+2/3
0. In fact, this is
orrect because −	a1��	− 	a2��	+2/3
−2/3�	a1	+ 	a2	�
2/3=0. Here we have used the relations �20� and �23�.

Let us now consider the case in which the expression
nder the module sign is negative, i.e., A /B	a1�� / 	a2��	.
hen inequality �26� is equivalent to a1��− �2A /B

IG. 5. The set S1 of the stabilizing values �1 �see inequality �25�� for the
iven C2��0 and the set S2 satisfying the condition that perturbations should
elong to the chaotic region �cr.
1�	a2��	+2/3
0. This inequality is also right because

nloaded 31 May 2006 to 212.192.236.176. Redistribution subject to AI
a1�� − 
2
A

B
+ 1�	a2��	 +

2

3


 a1�� − 
2
a1��

	a2��	
+ 1�	a2��	 +

2

3

= − a1�� − 	a2��	 +
2

3


 −
2

3
�	a1	 + 	a2	� +

2

3
= 0.

IV. CONCLUSION

The development of the theory of dynamical systems
and numerous studies of nonlinear processes has shown that
chaotic behavior is typical and prevalent in many nonlinear
processes. Nowadays it is obvious that chaotic properties are
inherent in the overwhelming majority of systems, and if
chaos is not detected, this is perhaps due to the fact that it
arises in very small regions of the parametric space or for
nonphysical parameter values. The predictability problem,
which first arose for fairly complex systems �such as hydro-
dynamic systems or systems in statistical mechanics�, be-
came common for many fields of modern science.

At the same time, as is known, chaotic dynamical sys-
tems are pliable to external perturbations. This property can
be used to the control of dynamical systems and suppression
of the onset of the undesirable chaotic regime. This means
that parametric perturbations should be determined at the set
of their values for which the system has a positive maximal
Lyapunov exponent. If this is not the case, we cannot assess
the chaos suppression. This is the main sense of this phe-
nomenon. However, in the present article we come to the
main conclusion that the phenomenon of chaos suppression
cannot be achieved via arbitrary parametric excitations.

Analyzing the known Duffing-Holmes model �1�, we
found that chaotic dynamics cannot be suppressed by a har-
monic perturbation of the parameter �, independently from
the other parameter values. In addition, we have shown in
the case in which � and � are incommensurable that chaos
suppression cannot be realized even by an arbitrary periodic
perturbation of �. On the basis of our analysis, we have come
to the conclusion that to stabilize the behavior of a chaotic
system, the perturbation and parameters must be carefully
chosen. This contradicts many previous expectations that the
chaos may always be suppressed parametrically. If, however,
we apply short-time impulse perturbations of the parameter
�, then we can easily stabilize the system dynamics.24 One
can expect that similar results will be observed in other
systems.

In this connection, it would be useful to have a basic
criterion that would allow us to determine in what cases the
chaotic motion can be stabilized by parametric excitations.
This important question will arise every time in practice.
However, as of yet there are not even general analytical cri-
teria of the existence of chaos in quite simple dynamical

systems.
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