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INTRODUCTION

Physiological characteristics of heart activity in var-
ious pathologies are intensely studied by biophysicists,
biochemists, medical physicists, etc. The majority of
theoretical approaches are based on the analysis of
electrocardiograms (ECGs), because they have many
advantages over other methods (they are simple, nonin-
vasive, highly informative, etc.). In addition, any
change in the myocardium immediately affects heart
rate [1] and, hence, is reflected in an ECG. In turn, any
heart disorder may lead, for the body as a whole, to
severe consequences from which it is impossible to
recover.

Myocardial disorders caused by various factors have
been studied for decades. However, clinicians routinely
use only elementary approaches to analyze patients’
cardiac rhythms. Only recently have new methods
based on the dynamic system theory attracted consider-
able attention [2–8]. The purpose of these studies is to
determine the dependence of the dynamic characteris-
tics of ECG time series on various physiological
changes in the heart tissues and study the possibility of
using them as clinically important parameters.

In medical practice, a normal heart rate is often
referred to as a normal sinus rhythm. Despite this term,
it is well known that intervals between heartbeats fluc-
tuate. Even in healthy subjects at rest, heart rate shows
considerable variations in frequency and amplitude,
because the heart must permanently respond to all
physiological processes in the body. Moreover, exactly
periodic patterns of heart rate indicate a severe pathol-
ogy of the heart [9].

In the late 1980s, a hypothesis was put forward
[10, 11] that 

 

deterministic chaos

 

 was inherent in a nor-

mal human heart rate. Subsequent analysis demon-
strated that affected and healthy subjects substantially
differed from each other in the quantitative parameters
of the chaos [6, 7] and that the original assumption that
elements of dynamic chaos were present in the cardiac
rhythm was acceptable. Therefore, the role of chaos in
the pathogenesis of heart diseases is now the subject of
numerous studies.

Here, we consider the relationship between the
dimensions of the time series of ECG RR intervals and
the complexity of cardiac rhythm. We analyze the cor-
relation dimension of series derived from the ECGs of
a 

 

sufficiently large group

 

 of patients with different
types of heart failure, including angina pectoris, atrio-
ventricular block, and consequences of myocardial inf-
arction. Thus, the purpose of our study was to obtain
evidence that patients with different pathologies differ
from one another in ECG correlation dimensions. This,
in turn, may help in provisional diagnosis by the meth-
ods proposed.

REPRESENTATION OF AN ECG
AS A SERIES OF RR INTERVALS

An ECG is a curve showing the changes in the
potential difference during consecutive myocardium
contraction cycles. It can be used to detect various car-
diac rhythm disorders. Figure 1 shows a typical ECG of
a healthy human. Every peak (positive or negative) cor-
responds to the excitation or repolarization of different
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Fig. 1.

 

 A typical ECG.
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 ECG, electrocardiogram; HRV, heart rate variability.



 

116

 

BIOPHYSICS

 

      

 

Vol. 51

 

      

 

No. 1

 

      

 

2006

 

MIRONYUK, LOSKUTOV

 

regions of the heart. The interval between the peaks of
neighboring R waves of an ECG is equal to the duration
of a complete cardiac cycle; it is referred to as the RR
interval. Analysis of their sequence makes it possible to
detect cardiovascular pathologies and diagnose individ-
ual diseases.

To study heart rate variability (HRV), an ECG is
represented as a time series. In the general case, a time
series is an array of 

 

N

 

 numbers that are values of a
dynamic variable 

 

x

 

(

 

t

 

) at certain intervals of time. How-
ever, two methods of the construction of a time series
are used for ECG analysis: the classic method [12–14],
when the variable is fixed at equal intervals of time, and
a series of RR intervals obtained by measuring dis-
tances between R peaks in the ECG [15–17]. In this
study, we used the latter variant, consisting of the fol-
lowing steps.

Each R wave appearing at the moment of contrac-
tion 

 

t

 

i

 

 is substituted by a single pulse (Fig. 2), which is
approximated by Dirac’s 

 

δ

 

 function, 

 

δ

 

(

 

t

 

 – 

 

t

 

i

 

). After that,
the entire ECG is replaced by a series of RR intervals:

(1)

Thus, the desired time series 

 

V

 

i

 

 is formed by the
intervals between individual pulses, RR(

 

i

 

):

(2)

where 

 

N

 

 is the total number of elements in the series.
The formation of a time series as a sequence of the
duration of intervals between peaks is widely used for
analyzing biological systems where threshold values of
variables are repeated according to a specific pattern.
Although this representation is not a classical series of
values recorded at equal time intervals, it still may
serve as an actualization of the original nonlinear sys-
tem (i.e., characterizing cardiac activity) [15].

This approach makes it possible not only to study
the details of hidden consistent patterns, but also to
reveal certain characteristics of chaotic processes inher-
ent in the original series, e.g., to estimate the embed-
ding dimension [17].

x t( ) δ t ti–( ).
i

∑=

RRi V i( ), V V 1( ) V 2( ) … V N( ), , ,( ),= =

 

THE CORRELATION DIMENSION OF AN ECG

A heart tissue pathology causes a change in an ECG.
These changes are clearly seen when quantitative
parameters of the attractor reflecting the complexity of
the behavior of the whole system, such as the correla-
tion dimension and embedding dimension, have been
calculated.

 

Correlation dimension.

 

 The correlation dimension
as a characteristic of the attractor is easy to calculate on
the basis of the time series composed of the ECG RR
interval durations by the method suggested in [8].
According to this method, the reconstruction of the
phase space and the restoration of the chaotic attractor
of the system are reduced to the construction of a
pseudoattractor, where the measured series itself, taken
with a time delay, serves as the set of components of the
vector.

Let 

 

m

 

 be the embedding dimension, i.e., the smallest
dimension of the phase space containing the entire
attractor of the dynamic system. Then, the original time
series (2) can be used to obtain the “restored” attractor,
which is constructed from the following vectors:

(3)

…

where 

 

n

 

 = 

 

N

 

 – (

 

m

 

 – 1)

 

τ

 

 is the number of vectors; 

 

τ

 

 is the
delay time, i.e., the time interval at which the variable

 

V

 

 is measured.
For our analysis of ECG, the components of these

vectors should be taken in the form of a finite number
of RR interval lengths. This means that the delay time

 

τ

 

 in Eq. (3) is not constant; it varies for different com-
ponents. As noted above, although this approach differs
from the classic approach with a fixed sampling step, it
permits characterizing the attractor of the original sys-
tem and unambiguously identifying the state of this
system. In addition, this representation is much better
for analysis of most physiological processes.

Then the correlation integral for the series of corre-
lation vectors (3) should be estimated:

(4)

where 

 

H

 

(

 

α

 

) is Heaviside’s step function

(5)

and 

 

|

 

x

 

i

 

 – 

 

x

 

j

 

|

 

 is the distance between vector components
in an 

 

m

 

-dimensional phase space. Note that this dis-
tance can be determined by several methods [14].

x1 V 1( ) V 1 τ+( ) … V 1 m 1–( )τ+( ), , ,( ),=
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Fig. 2.

 

 Representation of ECG as a time series.
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Which of them will be used depends on the specific
problem to be solved.

The correlation dimension is determined as the tan-
gent of the slope of the linear segment of correlation
integral on a logarithmic scale. Thus, the expression for
the correlation dimension may be written as

(6)

As 

 

r

 

 increases, C(r) reaches saturation, i.e.,
C(r)  1 at the r values comparable with the attractor
size. In this case, the distance between any two points
of the attractor is obviously smaller than the parameter
r. On the other hand, it is obvious that at a very small r
the number of pairs of points xixj the distance between
which is no larger than r will be small, because the
number of points on the attractor is finite. Therefore,
statistics become poor with a decrease in r, and, in prac-
tice, the correlation dimension (6) is found from the lin-
ear segment of the plot in a limited range of r values.

The embedding dimension m (i.e., the effective
number of variables describing the system) is usually
unknown a priori for the analyzed systems; hence, the
common practice is to calculate correlation dimensions
for different m values. As the embedding dimension is
increased to a certain critical value, the correlation
dimension also increases. However, when this critical
value has been reached, d ceases to change: the slope of
the linear segment of the lnC(r) curve as a function of
lnr becomes constant. This critical value of m is the
minimal embedding dimension and corresponds to the
number of independent variables describing the system.

Restrictions of the methods for calculating the
correlation dimension. The correlation dimension of
the attractor of a dynamic system carries information
on the complexity of its behavior. To date, the Grass-
berger–Procaccia method [18] is one of the most popu-
lar and informative algorithms for the procession of
time series. However, the drawback to the advantages
of this method is a large amount of calculations (O(N2)
operations). Like many other methods of analyzing
time series, this method is ineffective in the case of
short series (less than 104 values) [19]. In addition, the
Grassberger–Procaccia algorithm is practically inappli-
cable to nonstationary series.

Thus, some restrictions should be put on the time
series to preclude errors when calculating the correla-
tion dimension:

(1) the time series should be stationary [12, 20, 21]
and

(2) the sample length should be at least Nmin ≈ 10d/2

to obtain a significant estimate of the dimension.
Because of the first restriction, the calculation of

this HRV characteristic may prove to be incorrect.
However, the precise correlation dimension is not so
important for our analysis, because the main question is
whether patients with different heart pathologies differ
with respect to the correlation dimension (d) of the

d
C r( )ln

rln
-----------------.=

ECG. Determination of the d values for several fixed
embedding dimensions m will suffice to answer this
question. Indeed, at large values of the embedding
dimension, curves of the dependence d(m) almost reach
a plateau, only slightly deviating from it. This method
differs from the true one in that, generally speaking, the
choice of m is strictly determined and the value cannot
be set manually.

In this study, we compare the suggested HRV
parameter for different ECGs at the same embedding
dimension m. Hereinafter, we mean precisely this
parameter when speaking of the correlation dimension
of ECG RR parameters. Although this approach is
somewhat incorrect, it makes it possible to attain the
main goal, i.e., to divide the patients into groups with
different pathologies.

In addition, since we were trying to obtain statisti-
cally significant results, we did not restrict our study to
one ECG from the group selected. We used for analysis
at least several (sometimes, very many) ECGs and then
averaged the data.

Regarding the second restriction, we may note the
following. The Nmin ratio may be interpreted differently.
A sample of a specified length N allows us to determine
a dimension that does not exceed dmax ≅ 2logN. Thus,
for the values N = 104–105, which are the most typical
in practice, we found dmax ≅ 8–10 [12, 22]. From the
medical point of view, to obtain a time series of RR
intervals of a patient’s ECG consisting of 104–105 ele-
ments means that the ECG should be recorded for many
hours (or even days) in a row. The longer the time
series, the higher the significance of the resultant esti-
mate of the correlation dimension. However, this diffi-
culty is overcome with the use of modern mobile
devices, e.g., a Halter monitor, making it possible to
record ECGs continuously over several days.

ANALYSIS OF FACTUAL DATA

To obtain statistically significant data, we processed
159 series of RR intervals derived from the ECGs of
patients with different cardiac rhythm disorders. All
ECGs were obtained from the same source [23]. To
exclude accidental outliers (which are inevitable in cur-
rently used mobile electrocardiographs), the records
were preliminarily processed. Then, all ECGs were
subdivided into groups according to individual heart
diseases. After each ECG was processed, the data were
averaged over each group. According to the first restric-
tion of the method for calculating the correlation
dimension, we tested whether the resultant series of RR
intervals were stationary. As expected, all series studied
proved to be nonstationary. Other researchers came to
the same conclusion with the use of other criteria for the
stationary/nonstationary state of time series [20, 24].
Therefore, we used the aforementioned procedure in
subsequent analysis.
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The table shows the results of the calculation of the
ECG correlation dimension corresponding to the
embedding dimension values m = 3, m = 4, and m = 5.
As evident from the table, group of patients with differ-
ent heart pathologies differed from one another in cor-
relation dimension. However, this was not true for all
groups. For example, the ranges of d values sometimes

overlapped within one embedding dimension (m = 3).
This behavior of d was observed in the third (angina
decubitis and pathology of coronary vessels) and fourth
(angina decubitis and consequences of myocardial inf-
arction) groups, as well as the first (pathologies of cor-
onary vessels with different degrees of being affected)
and eighth (mixed angina and pathology of coronary
vessels) groups (Fig. 3). However, the diagnoses of
these patients also partly coincided. This coincidence
may have accounted for the overlapping of the correla-
tion dimension ranges.

As the embedding dimension was increased (m = 4
and m = 5), the ranges of d values for the same groups
of ECGs (the third and fourth and the first and eighth)
no longer overlapped. This indicates that an increase in
m allows the group of pathologies to be identified more
precisely. Thus, when classifying the ECGs of patients
with different types of heart failure, one should con-
sider d values at several values of the embedding
dimension. The results obtained at only one value of the
embedding dimension will not unambiguously indicate
a specific pathology.

Subsequent growth of the embedding dimension
leads to an increase in the differences between individ-
ual groups. These results are shown in Fig. 4. For com-
parison, Fig. 4 also shows a straight line corresponding
to a healthy patient.

These plots clearly demonstrate that

• in all cases studied here, the correlation dimen-
sions of ECGs considerably differ from one another if
the embedding dimension is sufficiently large;

• as m grows, the curve of the dependence of corre-
lation integral on the embedding dimension almost
reaches a plateau. In other words, d almost ceases to
change at a certain value of m.

Patients grouped according to age and pathology

ECG group d at m = 3 d at m = 4 d at m = 5

1 2.51 ± 0.04 3.11 ± 0.05 3.61 ± 0.1

2 2.13 ± 0.02 2.60 ± 0.03 2.78 ± 0.03

3 2.68 ± 0.04 3.29 ± 0.07 3.66 ± 0.08

4 2.74 ± 0.05 3.45 ± 0.06 3.89 ± 0.1

5 2.20 ± 0.02 2.47 ± 0.05 2.54 ± 0.03

6 2.57 ± 0.03 3.08 ± 0.08 3.78 ± 0.1

7 2.32 ± 0.03 2.81 ± 0.05 3.57 ± 0.1

8 2.51 ± 0.04 2.98 ± 0.05 3.75 ± 0.1

9 2.51 ± 0.04 1.36 ± 0.04 1.42 ± 0.06

10 2.51 ± 0.04 3.7 ± 0.043 4.44 ± 0.08

11 2.51 ± 0.04 3.19 ± 0.04 3.51 ± 0.08

Groups: 1, patients with coronary vessel disorders (age, 47–
60 years; 21 ECGs); 2, patients that have had coronary artery shunt
and myocardial infarction (age, 55 and 60 years; 12 ECGs); 3, patients
with angina decubitis and coronary pathology (age, 40–54 years;
17 ECGs); 4, patients with angina decubitis that have had myocar-
dial infarction (age, 58 years; 9 ECGs); 5, patients with angina
decubitis and coronary pathology that have had myocardial infarc-
tion (age, 70 and 71 years; 7 ECGs); 6, patients with angina decubi-
tis and pathology of the coronary artery (age, 45–51 years;
13 ECGs); 7, patients with angina of effort that have had myocardial
infarction (age, 51–66 years; 16 ECGs); 8, patients with mixed
angina pectoris and various coronary disorders (age, 48–63 years;
32 ECGs); 9, patients with atrioventricular block (age, 73–89 years;
6 ECGs); 10, patients with backward heart failure (8 ECGs);
11, patients with atrial flutter (18 ECGs).
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Fig. 3. The correlation dimensions of ECGs of patients with
different heart diseases for m = 3.
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Fig. 4. Dependence of the correlation dimensions of the
ECGs of patients with different heart diseases on the
embedding dimension: 1, angina pectoris and myocardial
infarction; 2, angina pectoris; 3, Atrioventricular block;
4, backwards heart failure. The straight line approximately
corresponds to the normal state.
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CONCLUSIONS
We have studied series of RR intervals of the ECGs

of patients with certain heart pathologies, as well as
time series corresponding to the normal cardiac
rhythms of healthy people. Analysis of correlation
dimension has demonstrated that this characteristic can
be used to solve the reverse problem, i.e., to divide
patients into groups according to the types of heart fail-
ure. The degree of chaos in ECG patterns increases or
decreases depending on the type of heart pathology.
Note, however, that this conclusion has been made after
the treatment of sufficiently long series.

It is well known that heart pathologies may be
caused not only by dysfunction of the cardiovascular
system per se, but also by entirely different diseases.
Therefore, of special interest is the study of so-called
hidden heart pathologies, which may be caused, among
other factors, by drugs used for treating diseases other
than cardiovascular ones, but nevertheless affecting the
heart. Standard methods often cannot detect these
pathologies at an early stage. Therefore, the develop-
ment of nonlinear dynamic methods, such as those
described here, may help to make substantial progress
in this field.

In addition, the use of the methods proposed here
gives hope for solving the “direct” problem, i.e., a pro-
visional diagnosis of a heart pathology and/or correc-
tion of it. We are now investigating this subject in col-
laboration with the Bakulev Research Center of Cardio-
vascular Surgery of the Russian Academy of Medical
Sciences [25]. The solution of these and related pro-
cesses would make it possible to determine the bound-
ary beyond which chaotic processes that are often
present in cardiac rhythm become incompatible with a
healthy state and unambiguously indicate a disease.
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