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Abstract—The method of singular spectral analysis (SSA) is described and used to analyze the series of
Wolf numbers that characterizes solar activity from 1748 until 1996. Since this method is relatively new,
we detail its algorithm as applied to the data under study. We examine the advantages and disadvantages
of the SSA method and the conditions for its applicability to an analysis of the solar-activity data.
Certain regularities have been found in the dynamics of this series. Both short and long (80–100-
year) periodicities have been revealed in the sunspot dynamics. We predict the solar activity until 2014.
c© 2001 MAIK “Nauka/Interperiodica”
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INTRODUCTION

It has long been noticed that the solar activity is
related to the number of sunspots visible on the solar
disk. The sunspot number varies greatly within an
11-year interval called the solar cycle. The accom-
panying change in the solar magnetic-field structure
indirectly affects the Earth’s climate and has a prob-
able relationship to natural disasters. Since the solar
magnetic activity is significant, its analysis is of great
practical interest.

Various tracers are used to describe the dynamics
of solar magnetic activity, of which the Wolf number
(relative sunspot number) is most convenient. The
dynamics of this parameter is quasi-periodic in pat-
tern. However, accurate predictions are difficult to
make, because simplemodels of the process disregard
many important factors of the solar magnetic activ-
ity. During the last 250 years, the duration of the
solar cycle has varied by no more than 20%, while
its amplitude has varied by more than a factor of
10. Even sophisticated models do not give a detailed
description of these variations.

Recently, many methods for predicting and recon-
structing the dynamics of the series of Wolf numbers
have been proposed (see Schatten 1997, Nagovi-
tsyn 1997, Wilson et al. 1998, Hoyt and Schatten
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1998, Hathaway et al. 1999, and references therein).
Since they all have various drawbacks, predicting
the sunspot dynamics from the available observa-
tional data alone, without constructing a model of the
phenomenon, has become very promising. Here, an
analysis of time series by themethods of nonlinear dy-
namics (see Afraı̆movich and Reı̆man 1989, Casdagli
1989, Loskutov and Mikhaı̆lov 1990, Ruelle 1990,
Sauer et al. 1991, Malinetskiı̆ and Potapov 2000, and
references therein) can give a significant contribution.
In this case, however, there are also many difficulties
that stem from the fact that the series ofWolf numbers
is apparently not a strictly deterministic system and
has no well-defined dimensionality (Lowrence et al.
1993, 1995); besides; it is relatively short.

As a new method for analyzing and predicting the
dynamics of the time series formed by Wolf numbers,
we propose to use a singular spectral analysis (SSA).
As we show below, it provides highly reliable pre-
dictions of the amplitude of the 11-year solar cycle
and is suitable for revealing longer cycles. It can
also be used to study regularities in series of other
astrophysical indices. Since this method is relatively
new and covered little in the literature, we detail its
algorithm as applied to the formulated problem.

SINGULAR SPECTRAL ANALYSIS
The SSA method (Broomhead and King 1986a,

1986b; Broomhead and Jones 1989; Vautard et al.
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1992; Danilov and Zhiglyavskiı̆ 1997) used here al-
lows the following:

–to distinguish the components of a time series
obtained from a sequence of values of a quantity taken
at equal time intervals;

–to find periodicities in a series that are not known
in advance;

–to smooth initial data on the basis of selected
components;

–to best separate a component with a period
known in advance; and

–to predict the subsequent behavior of the ob-
served dependence.

The SSA method is efficient enough to success-
fully compete with numerous smoothing techniques
(Danilov and Zhiglyavskiı̆ 1997, Percival and Walden
1993, Theiler et al. 1992, Kaplan and Glass 1992).
Moreover, SSA-based predictions in many cases
yield more reliable results than do other known algo-
rithms (see Casdagli 1989, Danilov and Zhiglyavskiı̆
1997, Deppish et al. 1991, Murray 1993, Cao
et al. 1995, Keppenne and Ghil 1995, and references
therein).

The SSA method is based on the passage from
an analysis of the initial linear series (xi)Ni=1 to an
analysis of a multidimensional series composed of its
sets, which, apart from xi itself, contain a certain
number of xi−j , j = 1, . . . , τ , at preceding times.

Let us briefly describe the main stages of SSA
application to the specific series (xi)Ni=1.

(1) At the first stage, the one-dimensional series
is transformed to a multidimensional one. For this
transformation, it is necessary to take some number
of delays τ ≤ [(N + 1)/2], where [·] denotes the in-
teger part of a number, and to represent the initial τ
values of the sequence as the first column of some
matrix X. The sequence values from x2 to xτ+1 are
chosen for the second column of this matrix, and so
on. The last τ elements of the sequence xn, . . . , xN

correspond to the last column with number n = N −
τ + 1. Thus, the transformed series takes a matrix
form

X =




x1 x2 x3 . . . xτ . . . xn

x2 x3 x4 . . . xτ+1 . . . xn+1

x3 x4 x5 . . . xτ+2 . . . xn+2

...
...

...
. . .

...
. . .

...

xτ xτ+1 xτ+2 . . . x2τ−1 . . . xN




.

The constructed matrix X is rectangular, but in the
limiting case, i.e., for τ = (N + 1)/2 and odd N , it
degenerates to a square matrix.
(2) Next, the corresponding covariance matrix is
constructed for matrix X

C =
1
n

XXT .

(3) Now, the eigenvalues and eigenvectors of ma-
trix C must be determined. This requires its de-
composition into eigenvectors C = V ΛV T, where we
introduced

Λ =




λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λτ ,




the diagonal matrix of eigenvalues, and

V =
(
V 1, V 2, . . . , V τ

)
=




v1
1 v2

1 . . . vτ
1

v1
2 v2

2 . . . vτ
2

...
...

. . .
...

v1
τ v2

τ . . . vτ
τ ,




the orthogonal matrix of eigenvectors for matrix
C. Clearly, Λ = V TCV , det C =

∏τ
i=1 λi, and∑τ

i=1 λi = τ (the latter equality holds only for the
prenormalized rows of matrix X).

(4) The matrix of eigenvectors V is commonly
represented as a transition matrix to the principal
components Y = V TX = (Y1, Y2, . . . , Yτ ) of the ini-
tial series, where Yi, i = 1, 2, . . . , τ , are the rows of
length n. In this case, the eigenvalues λ1, λ2, . . . , λτ

may be considered as a contribution of the principal
components Y1, Y2, . . . , Yτ to the total information
content of the time series (xi)Ni=1. The initial matrix
can then be completely reconstructed from the de-
rived principal components

X =
(
V 1, V 2, . . . , V τ

)




Y1

Y2

...

Yτ




=
τ∑

i=1

V iYi;

in turn, the time series (xi)Ni=1 can be reconstructed
from it. Note that, in general, not all of the prin-
cipal components Y1, Y2, . . . , Yτ but only some of
them that are significant in terms of the information
content are used to reconstruct the time series (see
Broomhead and King 1986a, 1986b; Broomhead and
Jones 1989; Vautard et al. 1992). More specifically,
each row vector Yi, i = 1, 2, . . . , τ , may be considered
as the result of projecting a τ-dimensional set of
points, each of which is specified by the τ-coordinate
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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column vector of matrix X, onto the direction that
corresponds to eigenvector V i. Thus, the series turns
out to be represented as a set of τ components Yi; the
weight of component Yi in the initial sequence (xi)Ni=1
can be specified via the corresponding eigenvalue λi,
which, in turn, corresponds to eigenvector V i.

The transformations Yi = (V i)TX, i = 1, 2, . . . , τ ,

Yi[l] =
r∑

q=1
vi
qx

l
q, l = 1, 2, . . . , n, are linear filters. In

the case under consideration, the eigenvectors V i are
the transition functions of these linear filters, while
the filters themselves are tuned to the components of
the multidimensional series X and, consequently, to
the components of the initial series (xi)Ni=1.

Each ith eigenvector includes τ components, i.e.,

V i =
(
vi
1, v

i
2, . . . , v

i
τ

)T
. Let us construct a depen-

dence of components vi
k, k = 1, 2, . . . , τ on their

number: vi = vi(k). Using the orthogonality of
eigenvectors, the subsequent analysis of sequence
(xi)Ni=1 can then be performed by studying the dia-
grams constructed by analogy with Lissajous figures.
More specifically, the components vi

k and vj
k are

plotted in pairs along the axes. If the constructed
diagrams are nearly circular, then the functions
vi = vi(k) and vj = vj(k) will be similar to periodic
functions with close amplitudes and with a phase shift
of about a quarter of the period.

Thus, a quantity that has the meaning of a period
can be calculated for some pairs of eigenvectors V i

and V j . Consequently, a graphical analysis gives an
idea of the frequencies of the components that form
the initial time series (xi)Ni=1.

For a given τ , the number of all possible pairs of
the principal components is ∼τ2. Clearly, all these
pairs are very difficult to analyze even at small τ .
Moreover, since only a few plots are spiral in shape at
large τ , the range of search should be narrowed before
beginning a graphical analysis. This can be easily
done if we arrange V i and Yi in order of decreasing
eigenvalues and if we consider only those pairs of
eigenvectors that have close values of λi. In the λ =
λ(i) diagram, these pairs at sufficiently large λ appear
as steps against the background of a general decrease
in λ(i) with increasing i. By examining these steps,
we can determine theminimum value ofλmin(i) below
which the function λ = λ(i) relaxes to an exponential
tail.

(5) Suppose that only the first r of the τ compo-
nents were retained for the subsequent analysis. The
ASTRONOMY LETTERS Vol. 27 No. 11 2001
first r eigenvectors V i are then used to reconstruct
the initial matrix X. In that case,

X̃ =
(
V 1, V 2, . . . , V r

)




Y1

Y2

...

Yr




=
r∑

i=1

V iYi,

where X̃ is the reconstructed matrix with n columns
and τ rows. The initial time series reconstructed from
this matrix is now defined as

x̃s =




1
s

s∑
i=1

x̃i,s−i+1, 1 ≤ s ≤ τ

1
τ

τ∑
i=1

x̃i,s−i+1, τ ≤ s ≤ n

1
N − s + 1

N−s+1∑
i=1

x̃i+s−n,n−i+1, n ≤ s ≤ N.

This method of obtaining the sequence (x̃i)Ni=1 is
called a SSA smoothing of the initial time series
(xi)Ni=1 over the first r components of τ .

(6) At the next stage of SSA application, one may
consider a prediction of the initial time sequence (see
Keppenne and Ghil 1995, Danilov 1997, Ghil 1997,
and references therein), i.e., a construction of series
(xi)

N+p
i=1 , which is an extension of the known data

(xi)Ni=1. In turn, the prediction for p points ahead
reduces to applying the operation of prediction for one
point p times.

The basic idea of finding xN+1 is as follows. Let
there be a set of x1, x2, . . . , xN . We now construct a
sample in the form of matrix X. The previously se-
lected eigenvectors V 1, V 2, . . . , V r of matrix C may
be taken as a basis of the surface containing this
sample.

Let us write the parametric equation for this sur-

face as S(P ) =
r∑

i=1
piV

i, where the set of r param-

eters pi corresponds to each value of vector S(P ),
which is a column of height τ . In that case, the kth
(k = 1, 2, . . . , n) column of the initial matrix X has
its own set of parameters P k = (pk

1, p
k
2 , . . . , p

k
r ) and,

consequently,

X1 = S(P 1), X2 = S(P 2), . . . , Xn = S(Pn).
To predict xN+1, it is necessary to construct the
(n + 1)th column Xn+1 of matrix X, which, in turn,
corresponds to some value of parameters Pn+1 =
(pn+1

1 , pn+1
2 , . . . , pn+1

r ). This set of parameters can be

found from the relation S(P ) =
r∑

i=1
piV

i based on the
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Fig. 1.Monthly mean Wolf numbers.
(xi)Ni=1 data alone. The predicted column is written

as XN+1 = S
(
Pn+1

)
.

Let us introduce the following notation:

V∗ =




v1
1 v2

1 . . . vr
1

v1
2 v2

2 . . . vr
2

...
...

. . .
...

v1
τ−1 v2

τ−1 . . . vr
τ−1




,

p̃ =




p̃n+1
1

p̃n+1
2
...

P̃n+1
r




, Q =




xN−τ+2

xN−τ+3

...

xN




,

Vτ =
(
v1
τ , v

2
τ , . . . , vr

τ

)
.

The parameters (pn+1
1 , pn+1

2 , . . . , pn+1
r ) can be deter-

mined from the system of equations V∗P̃ = Q for P̃ .
Thus, the final expression for the predicted value reads

xN+1 =
VτV

T
∗ Q

1 − VτV T
τ

.

In the simplest case, to predict the next values
requires only appropriately changing the matrix Q
and again multiplying it by VτV T

∗ /(1 − VτV
T
τ ). Ad-

ditionally, however, the entire SSA algorithm can be
partially or completely repeated for each next point. In
this case, the matrices Vτ and V∗ also change.

(7) At the final stage of SSA application, one
chooses the main parameter, the number of delays
τ used to construct the multidimensional sample X.
As with the selection of principal components, the
choice of τ significantly depends on the problem being
studied.

Let the problem consist in smoothing a series by
the SSAmethod, i.e., in reconstructing the series us-
ing known periodicities. In that case, as was already
noted above, separating the principal component is
filtering the series with the filter transition function
in the form of an eigenvector of this principal com-
ponent. The larger τ , the larger the number of parallel
filters, the narrower the passband of each of them, and
the better the series smoothing.

If unknown (hidden) periodicities must be deter-
mined in the observed sequence, then we should first
take the largest possible value of τ . After rejecting
nearly zero eigenvalues, the delay must then be re-
duced.

Suppose that it is necessary to separate one
known periodicity. In this case, we should choose
τ to be equal to the sought-for period.

Finally, let the problem consist in extending the
series under study by a specified value (i.e., in pre-
dicting the evolution of the observed process). We
should then take the maximum admissible value of τ
and then choose r.

USING THE SSA METHOD TO ANALYZE
SOLAR MAGNETIC ACTIVITY

Here, we apply the SSA method to observational
data on solar activity. Wolf proposed to use the
sunspot number as ameasure of solar activity in 1848.
To this end, he considered the sum of the total number
of spots seen on the solar disk and ten times the
number of regions in which these spots were located.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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Fig. 2. Prediction of the solar activity for 216 points (18 years ahead) from monthly mean Wolf numbers. The vertical
line corresponds to the boundary of the rejected values. We used 500 and 150 components for the decomposition and
reconstruction, respectively. The computations were performed in three stages. After predicting another 72 points, the
components of the series were recomputed.
The latter summand is intended to reconcile the mea-
surements made under different conditions. By com-
paring the previous observations obtained from var-
ious sources, Wolf reconstructed the solar-activity
data until 1818 with several small gaps and with
acceptable accuracy. Later, the monthly means were
reconstructed until 1749 (this series was used here)
and the yearly means until 1700. In the latter case,
however, the error in the data can be several tens of
percent.

The sequence chosen for our analysis spans a
wide period, from January 1749 until December 1996,
without gaps and with good time resolution (see
Fig. 1, where the time at intervals of one month
and the corresponding Wolf number are plotted along
the horizontal and vertical axes, respectively). Thus,
there is a total of 2976 values.

At the first stage of SSA application, the max-
imum admissible value of τ should be taken. For
our studies, we chose τ = 500, which allowed the
periodicities up to a period of 42 years to be covered.
Using larger τ significantly complicated numerical
calculation. Moreover, a slight increase in τ (to 600)
did not cause any significant changes in the results
of the first principal-component decomposition but
considerably reduced the computer resources.

Because of the large τ , the sequence of the roots
of eigenvalues for the matrix of the second moments
arranged in decreasing order rapidly relaxed to an
exponential tail. In combination with a large number
of initial points, this leads to the fact that even the first
principal component represents only a slight smooth-
ing of the initial series, and it is almost completely
ASTRONOMY LETTERS Vol. 27 No. 11 2001
reconstructed from the first four or five components
(the sum of the first five eigenvalues exceeds 99% of
their total). Moreover, the form of the first principal
component changes little at small τ , for example, at
τ = 5, which is attributable to the SSA stability for
this parameter. Therefore, using a large τ is justifiable
only from the viewpoint of prediction.

To test the prediction by the SSA method, let us
truncate the sequence of monthly mean Wolf num-
bers on the right by 216 points (18 years) and try
to reconstruct it according to the following scheme.
Determine the optimum parameters of the algorithm
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for reconstructing this series by an additional trun-
cation of the derived series and decompose it into
τ = 500 components. In this case, we must choose
such a number of the first components for which the
agreement between the predicted values and these
additionally rejected data is best. Subsequently, we
reconstruct the initially truncated part of 216 points
by using the parameters found.

It can be established by a direct exhaustive search
that the best results are obtained for r = 150 (the
number of selected components). Let us again take
the initial series truncated only by 216 points and
use the r chosen for its prediction. The prediction
quality can be further increased if we break down the
predicted interval into segments and recompute the
principal components after predicting each of these
segments. Ideally, such a recomputation must be
done after predicting each point, but this increases the
computational time. Figure 2 shows our prediction
for which the components were recomputed three
times at intervals of 72 points (which is almost iden-
tical to a prediction for 216 points with no breakdown
into intervals).

We could try to analyze the components of the
series for the presence of particular periods or for
the separation of known periods. However, their
large number and the associated similarity between
the components Yi of the initial series makes this
problem very complex (although quite solvable); i.e.,
the information contained in the series of monthly
mean Wolf numbers is, in a sense, redundant. In
addition, since something certain can hardly be said
about periodicities of several months, even in the case
of their separation, it is easier to take a series with a
large time step.
Let us now consider the series of yearly mean
Wolf numbers. Since the series contains a mere 248
points, the maximum possible delay is τ = 123. Let
us choose it as the initial one. The first 50 eigenvalues
are shown in Fig. 3. The first value gives the principal
component responsible for the trend; the steps form
the pairs of components with numbers 2–3, 4–5, 6–
7, 8–9, and 11–12; and the dependence relaxes to an
exponential tail starting from number 14. The eigen-
vectors for pairs 2–3, 4–5, 8–9, and 11–12 (Fig. 4)
correspond to 11-year periodicities (the spiral two-
dimensional plot for components 2 and 3 is shown
in the left panel of Fig. 5). However, in addition to
this (obvious) 11-year cycle, Gleisberg’s presumed
80-year cycle shows up (see the pair of eigenvectors 6
and 7 in Fig. 5). Since the corresponding eigenvalues
are not quite equal (the step is skewed; see Fig. 3)
and since the phase shift differs from π/2, the plot for
them is not spiral in shape. Nevertheless, the peri-
odicity is traceable, although very small eigenvalues
correspond to it.

For a better separation of the 80-year periodicity,
we can try to adjust τ for it. For the decomposition
of the series with τ = 80 of eigenvectors, vectors 4
and 7 correspond to this period. The eigenvalues that
correspond to these vectors are close, but the total
contribution of these components at the given τ ex-
ceeds 5%. The two-dimensional plot for components
4 and 7 resembles a circumference (Fig. 6). Figure 7
shows the 80-year cycle obtained by reconstructing
the series from these two components alone.

Let us now use the SSA method to predict the
series of yearly mean Wolf numbers. Let us truncate
it on the right by 18 years (i.e., by 18 points) and
ASTRONOMY LETTERS Vol. 27 No. 11 2001
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try to reconstruct them. To this end, we additionally
remove an 11-point-long segment and attempt to re-
construct them with the maximum possible accuracy.
We perform this procedure in different parts of the
series by choosing the best number of eigenvectors
for the reconstruction.

For the derived 219-point-long series (219 =
248 − 18 − 11, where 248 is the total number of
points; see above), the maximum admissible τ is
109. As numerical analyses show, the prediction
for 11 points strongly depends on the choice of the
components used for the reconstruction. However,
the qualitative picture is satisfactory for a wide range
of choices. Nevertheless, this value of τ is clearly
large for a quantitative prediction. At its lower values,
it is much easier to select the required number of
components. For example, at τ = 33, the prediction is
satisfactory when choosing the first 11 components.
Therefore, we use these parameters to reconstruct
the 18 distant points. In contrast to the case with
monthly mean initial data and τ = 500, it is now
possible, for τ = 33, to recompute the eigenvectors
every time by taking into account the last predicted
point (both at the stage of vector selection for the
prediction and during the prediction itself). The
prediction corrected at each step is shown in Fig. 8.
ASTRONOMY LETTERS Vol. 27 No. 11 2001
In addition, we considered a series of natural log-
arithms of the initial series. Taking the logarithm
is commonly used to analyze time series (e.g., in a
correlation analysis) and occasionally yields better re-
sults. As with yearly meanWolf numbers, we use τ =
123. In this case, the general form of the eigenval-
ues and eigenvectors did not change fundamentally.
Thus, it was unnecessary to use the logarithmic series
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Fig. 9. Prediction of solar activity until 2014.

in this case, because all the main periodicities and the
prediction were obtained from the initial series.

At the final stage, we used the SSA method for
the actual prediction of solar activity. To this end,
we took the series of yearly mean Wolf numbers from
1748 until 1996. Since this yearly mean series ends
at a minimum of solar activity, it is of interest to
describe its two subsequent maxima. This requires
extending the yearly mean sequence by 18 points.
We decomposed the series into 33 components and
selected the first 11 of them for the prediction.

The prediction until 2014 is shown in Fig. 9. It
can be seen from this figure that the maximum of
solar cycle 23 occurs in the first half of 2000 and
its amplitude is 122. The error in the maximum
amplitude is typically of the order of 5–10. This is
in excellent agreement with the maximum of Wolf
numbers that apparently occurred in the middle of
2000 and that had a smoothed value of 121. As we
see from the figure, in the immediate future, the Sun
will be relatively quiet (compared to the two previous
11-year periods), while themaximum of solar cycle 24
(presumably in 2011) will be comparatively low. Its
estimation yields a Wolf number of 117 (Fig. 9).

For comparison and testing the stability of our
result, we also analyzed the series of monthly mean
Wolf numbers. However, this analysis introduced no
significant additions in the prediction.

If follows from our experience of SSA application
that the prediction for more than one and a half 11-
year cycles is not informative. At the same time, the
Wolf numbers in Fig. 9 (prediction for 18 years ahead)
may be considered quite reliable.

CONCLUSIONS

An analysis of time series by the SSA method
will probably rank high among the various techniques
used to analyze and predict experimental data. Since
the initial series is decomposed into components
whose analytic form is not fixed in advance, the
SSA method allows us to satisfactorily separate
components with specified periods from the series
and to predict its dynamics. The only criterion for
SSA applicability is the information content of the
sequence under study. In this case, the constraints on
the number of points and characteristic periods are
generally much weaker than in other methods (e.g.,
in a correlation or Fourier analysis).

Here, we have considered the possibility of ana-
lyzing the sequence of Wolf numbers that character-
ize solar activity by the SSA method. Despite the
relatively small length of this sequence, the method
makes it possible to reveal its components that corre-
spond to the already known solar cycles and allows for
a reconstruction using only some of its components.
We also found that even short series of observations
could be predicted with acceptable accuracy by the
SSA method.

Like any other method, SSA has its own draw-
backs. First, there is a problem of accurately de-
termining the unknown frequencies in the sequence
under study (for a sufficiently long series, this problem
can be solved by a Fourier analysis). Second, SSA
does not include well-defined component selection
rules for a reconstruction, particularly for a prediction.
Finally, when applied to an analysis of solar activity, it
does not allow the occurrence times of activity peaks
(maximumWolf numbers) to be accurately estimated,
although it gives an accurate estimate of their am-
plitude. As a result, a systematic phase shift is ac-
cumulated in the predicted series. Nevertheless, as
follows from our analysis, the SSA method described
above serves as a good supplement to the available
experimental data reduction techniques, particularly
for analyzing and predicting fairly short time series to
which the series of Wolf numbers belongs (there are
only data on 23 11-year cycles).
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In the next papers on solar-activity analysis, we
will explore the possibility of correcting the cycle
phase by using other prediction methods and solar-
cycle regularities. It is also possible to improve the
governing parameters of this method and/or to use
additional information, for example, an empirical re-
lationship between solar-cycle amplitude and phase
(Dmitrieva et al. 2000). Note also that the decom-
position components in the SSA method are gen-
erally harmonic functions. However, because of the
nonlinearity in the behavior of the solar magnetic-
field generation mechanism, significant anharmonic-
ity emerges. As a result, the rise phase of the solar
cycle is appreciably shorter than its decline phase.
Although the maximum amplitude in the 11-year cy-
cle calculated by SSA is close to its true value, its
occurrence time is determined inaccurately. Hence,
significant errors are possible in the current Wolf
numbers at the rise and decline phases immediately
before and after the maximum of the 11-year cycle.

In general, it can be said that SSA is fairly efficient
and very promising method for predicting the dynam-
ics of solar magnetic activity. It can also be used
to study regularities in series of other astrophysical
indices.
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